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EXECUTIVE SUMMARY

Tennessee Department of Transportation (TDOT) established Pavement Management
System (PMS) since 1980°s. TDOT started to systematically collect roughness data
since1993 and distress data since 1998 and started using videotaping from 2002.
Similar to many other agencies in the United States, TDOT utilized PMS to perform
maintenance demand analysis based on which the budget allocation is determined.
Furthermore, cost- effectiveness analysis of maintenance activities or preventative
maintenance, prediction analysis of long-term pavement performance, and calibration
of pavement design equations are conducted based on the content and accuracy of PMS
data. The purpose of this research is to identify the current quality issues of PMS data
and to establish the dataquality management guideline by which a standard data
production procedure can be followed. Main research activities were summarized as
follows,

1. The research team conducted a nationwide online survey to investigate the
current practices on PMS data quality management. By reviewing the survey, the
researchteam identified the general quality issues on PMS data.

2. The research team systematically investigated the current PMS data, including
roughness data and distress data and established a framework of data quality
management.

3. Variability analyses were performed to quantitatively evaluate the influence of
data variability on pavement maintenance planning at network level. The data
considered in these analyses included International Roughness Index, Rutting
depth, distress extent and severity level.

4. The influence of maintenance activities on abnormal change of pavement
condition data was investigated. The changes of pavement condition data due to
the influence of maintenance activities are then identified. A Java based code
was developed to construct the performance curve and determined analytical
quality ofpavement condition data.

5. The difference of roughness data collected from different collection devices
werecompared and evaluated. Field verification tests were also performed to
evaluate the accuracy and reliability of roughness data collected by agency’s
devices and data provider’s device through statistical analyses.

6. A practical procedure for quality management of PMS data was developed to
improve the quality control and quality assurance in data collection in the future.



The following conclusions are summarized.

1.

The results from questionnaire indicated field validation/calibration of testing
equipment is considered as the most selected steps before data collection.
Individual distresses are recognized as the most common way in evaluating the
confidence of data collection. The completeness of collected data is considered
as the content of basic quality evaluation. The engineer ranked the following
factors in order of the amount impact on quality of pavement condition data:
device calibration; personnel training; sensor accuracy; accuracy of internal
measurement;system that is used to process the raw data; weather and testing
conditions; and speed of testing vehicles.

The survey also indicated that although some state DOTs have already
implemented or have been developing data quality control procedure, there is no
consensus on how to perform data quality control and assurance. The indicators
and criteria used by different state DOTs on evaluation of data quality are
different.

The data quality was classified into basic and analytical quality. By extensively
investigating current practices from other state agencies and reviewing current
PMS data, the measurers and criteria for different quality level are determined.
Data variability estimated the accuracy and preciseness of a value to a reference
value. It is considered as the most significant factor that influences the overall
data quality. The research team systematically evaluated the data variability and
its consequence on maintenance planning. The analyses indicated that:

1) The roughness data collected from two wheel path were not statistically
identical. IRI value from two wheel paths correlated well with each
otherwith high R-square, whereas rut depths from two wheel paths were
not linearly correlated. IRI for state routes exhibited larger variation than
thatfor Interstates.

2) For the three levels of distress severity, the accuracy of distress extent at
low severity level had little influence on the calculation of PDI while the
accuracy distress extent at moderate and high severity levels
significantlyinfluenced the accuracy of PDI. Transition matrices
analyses showed thatthe accuracy of distresses severity at moderate level
influenced the accuracy of PDI significantly.

3) The influence of data quality on maintenance planning varies in terms of
current pavement conditions, how the pavement condition indices are
defined, and how the maintenance and rehabilitation analyses are
performed. For the current PMS used in Tennessee, the variability of IRI
and distress severity level was the dominant influence factors for
maintenance planning. The variability of distress extent had slight



influence on maintenance planning. There is no significant influence of
variability of rut depth on the maintenance planning.

5. Results indicated that there is a significant decrease of IRI and increased of PDI
after the maintenance activities. Meanwhile, there is a slight decrease of rut
depth after maintenance activities. This is because the rut depth for interstates
and state routes were generally low at the time of maintenance. Maintenance
activities weregenerally applied to correct distress such as cracking. Therefore,
the influence of maintenance on improvement of rut depth seems limited.

6. Field validation tests were conducted to compare the difference of IRI collected
between agency’s devices and contractor’s device. Results indicated there might
be significant difference between different test devices in terms of IRI
collecting.Periodically lateral comparisons are necessary to validate the test
results from different devices.
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1. Introduction

1.1 Problem statement

The Pavement Management System (PMS) of the Tennessee Department of
Transportation (TDOT) has provided an immense amount of data on pavement surface
conditions at the network level. Since instituted in 1980s, the system covers the 1,104
miles interstate and 14,359 state routes (1). The pavement condition data for interstates
were collected every year, whereas those for state routes were measured once every two
years. TDOT has systematically collected pavement roughness data since 1993 and
pavement distresses data since 1998 and started using videotaping from 2002.

Because of the enormous information and convenience for access, more and more users
have started to use the PMS data for pavement maintenance strategy analysis. From
2007to 2011, TDOT conducted a pavement preventive maintenance research project to
investigate the cost-effectiveness of different pavement maintenance treatments and to
develop a guideline on pavement maintenance strategy analysis. The measured
pavementperformance data were exported from PMS to build treatment performance
models and acertain amount of abnormal pavement performance data was identified.
The researchers collected 553 HMA resurfacing maintenance records applied in the
Region 2 of Tennessee from 1999 to 2005 to build the post-treatment performance
curves. However, only 380 (69%) of the 553 road sections show a clear trend that
Present Serviceability Index (PSI) values decrease with the increase of overlay age.
Figure 1 shows the PSI on the two interstate sections on both plus and minus direction.
It can be seen that the PSI after 2000 decrease with the increase of pavement age while
the PSI before 2000 led an abnormal trend. Although TDOT has calibrated the
treatment performance models for PMS and developed a practical pavement strategy
analysis guide, the existence of those incorrect data will cause misleading pavement
maintenance decisions, especially at project levels. Thus, it is of great importance to
assure the accuracy of the PMS data so that more confidence and credentials can be
established with the PMS data.
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Figure 1- 1 Samples of abnormal PSI trends

Another issue with the current TDOT PMS is the lack of pavement distress data. In the
preventive maintenance project (2007 to 2011), the researchers investigated 2742 road
sections identified in Tennessee. However, only 215 of them (7%) have Pavement
Distress Index (PDI) curves and 176 (82%) of the 215 road sections show that PDI
decrease with the increase of overlay age. The lack of pavement distress data is mainly
due to the pavement videotaping methods. TDOT collects pavement distress data by
manually reading the videotapes of pavement. From 2002 to 2009, TDOT used the
forward facing images (photo log) which make the pavement surface distress difficult
toidentify due to the splashing of sunlight in the image. Although TDOT has the images
ofall their highways, it does not have distress data for all the highways. In order to
collect distress data, TDOT has already switched to downward images since 2010.
Pavement distress condition is an important indicator for triggering pavement
maintenance and selecting specific maintenance treatments, especially at project levels.
Thus, it is meaningful to investigate the quality of TDOT’s new pavement distress data
collection system.

Utilizing PMS data for pavement preservation analysis at both network and project
levelsis of great importance. At the network level, department policies and guidelines
developed based on PMS data have vital and extensive impacts on TDOT’s operation,
functions, and performance. At project level, pavement maintenance engineers rely on
more specific data such as friction and structural capacity to determine specific
maintenance methods and budget requirements for individual pavement segments.
Clearly, a guideline is needed to assess and improve the quality of TDOT current PMS
data, which will help PMS managers improve their quality control and quality
assurancein data collection and management. Furthermore, a guideline of utilizing PMS
data for maintenance strategy analysis including the limitation of current PMS data in
those applications will be presented with examples. This will be very helpful to help
pavementmaintenance engineers make maintenance strategy at both network and



project levels.

1.2 Objective

The main objective of this project is to develop guidelines on quality management of
pavement data collection and the application of PMS data in pavement strategy analysis
on both network and project levels. This objective will be accomplished by a
comprehensive assessment of the data provided by the current PMS.

To investigate the current status of TDOT PMS data and to determine the featureof
abnormal datasets.
7. To evaluate the accuracy and reliability of the PMS data through field survey
andstatistical analyses.
8. To develop a practical procedure for quality management of PMS data to
improvethe quality control and quality assurance in data collection in the future.



2. Pavement condition data

The pavement condition data are used to evaluate the condition of pavement. The data
arecrucial to the decision support system which is used to make maintenance decisions
of transportation infrastructure. The pavement condition data can also be used to
evaluate the cost-effectiveness of different maintenance strategies. The current
pavement design system also utilizes pavement condition data to calibrate the
performance models.

Therefore, the precise and accuracy of the pavement condition data is crucial to not
onlyto the pavement management activities but also to other related works as well.

The pavement condition data consists of four aspects: riding comfort, surface
deterioration, riding safety, and structural capacity. These data are utilized to support
decision making process in terms of different levels. At network level, riding comfort
andsurface deterioration are usually used for evaluating the current pavement condition
and making maintenance decisions.

2.1 International roughness index (IRI)

The International Roughness Index (IRI) is used to evaluate the pavement performance
associated with riding comfort. It is a combination reaction of the subjective feeling of
individual passengers, vehicles vibrations (1), and surface profile of pavement. The
subjective feeling of passengers differs from individuals. The vibrations of each vehicle
are different depending on the design and installation of damping system and cruising
speed. The profile of pavement surface is the root of vehicle vibrations and determines
the surface roughness.

The pavement profile related to the ride quality can be characterized by pavement
roughness index, one of the pavement condition indicators. The roughness index
describes the mathematical property of a two-dimensional road profile obtained from
measured longitudinal direction of the roadway. It can be calculated using a quarter-car
vehicle math model, whose response is accumulated to yield a roughness index with
unitsof slope (in/mi, m/km, etc.)(2). Introduced in 1986 (3), the International
Roughness Index (IRI) has become the most commonly used worldwide in the process
of construction and management of roadway facilities.

The National Cooperative Highway Research Program (NCHRP) initiated a research
project in 1980°s to help state agencies improve their use of roughness measuring
equipment (4). Consequently, The World Bank conducted a project aiming to compare
orconvert data obtained from different countries and built a bridge between the IRI and
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other roughness indices from different countries (5). The methods for measurement of



IRI can be rod and level surveying equipments, dipsticks (6), and laser profilometer
systems which is a common nationwide used method in pavement condition data
collection(7).

The international roughness index (IRI) has been proven to be a very useful tool to
evaluate rideability. In pavement management system, IRI is employed to establish
indices that reflect pavement serviceability. (26) The IRI is also a transferable reference
scale that can be used as a suitable calibration standard for all response-type and
profilometric instruments. (27)

The IRI was defined as the cumulative relative displacement of the axle with respect to
the frame of this reference quarter-car per unit distance travelled over the pavement
profile at a speed of 80km/h. It is expressed in m/km or in/mi at selected interval, (e.g.,
every 100m or 0.1mi.) (28) The traditional way of measuring IRI is to use response-
type pavement roughness measuring devices (29) which were equipped with a
mechanical integrator of the relative displacement of the axle with respect to the frame
of the trailer. A significant drawbacks of these device is that the results are influenced
by vehicle mechanic system and measuring speed. And in those days, the mechanical
systems were not advanced enough to provide the correct damping shocks or to
calibrate the unit correctly. (30)(31) The application of signal processing theory into the
measure road profiles give the birth to the high-speed road profiling which is firstly
developed by Spangler and Kelly in the 1960s. (32) Nowadays, with the application of
non-contact technique in obtaining road profile, the measurement of IRI has been
changed. IRI is nowcalculated from a measured longitudinal road profile by
accumulating the output from a quarter-car model and dividing by the profile length to
yield a summary roughness index with units of slope. (2) (33)

The IRI is influenced by changes of longitudinal elevation in wheel paths which is
associated with the characteristics of pavement surface. The pavement roughness
profile can be divided into a large variety of wavelength ranging from several
centimeters to tensof meters, with varying amplitudes. These wavelengths affect the
excitation of the various vehicles traveling the road in different ways, depending on
their traveling speed and dynamic characteristics such as suspension configuration,
wheel and frame inertial properties, and so on. (28)

In the calculation of IRI, not all the wavelength needs to be involved since some of the
wavelength has little effects on the ride quality of traversing vehicles, such as
wavelengths shorter than the dimensions of pavement macrotexture and longer than
roadway geometric features perceived as longitudinal slope or curvature. (28) The
moving average smoothing filter is usually used to obtain a profile of IRI. (34) This



filter consists of a low-pass filter to remove short wavelengths from the profile and a
high-passfilter to remove long wavelengths from the profile. The base length used for
the IRI averaging must be considered. Specifying the base length becomes particularly
importantwhen specifications for road quality are formulated, or when profiling
accuracy is prescribed. That the variation in IRI found over the length of a road is more
extreme when the base length is short should be taken into account when reporting
instrument accuracy or writing roughness specifications. Specifically, the accuracy of
high-speed profiling systems should be specified according to base length. (28) To date,
there are no established standards for pavement profile filtering; rather, the selection of
filters dependson the application at hand. (28)

Some factors influenced the precision of IRI are summarized as follows. (35)

e The procedures used in making the longitudinal profile measurement.

e The interval between adjacent profile elevation measures. The precision of IRI
can be improved by applying shorter interval.

e [RI precision is roughly equivalent to the precision of the slope obtained from
thelongitudinal profile measurements, fro distance ranging from the
approximately 1.5m (5ft) to about 25m (80ft).

e Errors in locating the wheel track longitudinally and laterally can influence the
IRI values significantly.

NCHRP Project 10-47 recommended guidelines for measuring a longitudinal pavement
profile to use in computing that pavement's International Roughness Index (IRI) and/or
Ride Number (RN). The investigators investigated the factors that affect roughness
measurements, quantified the effect of these factors on repeatability and accuracy, and
determined how and when these factors can be controlled. (36)

The report summarized the factors that affect profiler accuracy and repeatability.

e The utilization of improper filter may result in errors in IRI of 2 to 10 percent
anderrors in RN of 10 to 50 percent on typical roads.

e A sample interval of 167 mm or less is required for accurate measurement of
IRI.A sample interval of 50 mm or less is required for accurate measurement of
RN.

e Pavements exhibit significant transverse, seasonal, and daily variations in
roughness. Thus, a single roughness measurement, no matter how accurate,
mustbe considered only as a statistical sampling of the roughness.

e Typical variations in lateral positioning may cause repeat measurements of IR
tovary up to 20 percent on a section 300 m long.

e Profilers should, at a minimum, measure roughness in two wheel tracks. Height



sensor footprint has a strong influence on the way a profiler measures cracks
and open joints. Proper use of anti-aliasing filters improves the accuracy of profilerson
pavements with these features, as well as the agreement between measurements
obtained with different types of height sensors.

e Moderate acceleration and deceleration of less than 0.15 g can be tolerated in
network-level measurements of profile, but should be avoided in project-level
measurements.

e Ultrasonic sensors should be replaced due to the unreliable measurements of IRI
or RN.

Theoretically, an actual pavement profile can be simulated by an infinite number of
sinusoidal of various wavelengths and amplitudes. The pavement profile can be
translatedinto its constituent sinusoidal to form profile spectral content. By using the
Fourier analysis, the relationship of elevations of longitudinal profile and distance can
be transformed to the form of powers spectral density (PSD) in which amplitude is the
function of wave number. (28)

The PSD is primarily used to evaluate vehicle response, suspension optimization and
control, dynamic pavement loading and energy consumption. (37) As a direct statistic
ofroughness, PSD roughness is different from the IRI in that the former has been
routinelyadopted by vehicle manufactures for automobile design purpose for many
years.

However, the IRI is the most commonly used statistic for evaluating roughness in
highway transportation agencies. It is believed that if a relationship can be found
betweenthe IRI and the PSD roughness, it will be much easier and produce more
benefits for bothhighway and vehicle industries to compare their criteria and further to
improve their production designs. (38)

To correlate IRI with PSD, Sun simulated the IRI using PSD of pavement surface
fluctuation. Quarter-car models recommended by the World Bank for measuring
pavement roughness are adopted to simulate vehicle response. Surface roughness in
timedomain is generated based on 36 known PSDs of roughness. Results showed that
the IRIis linearly correlated with the standard deviation of relative vertical velocity
between theaxle and sprung mass. It was found that if PSD roughness is expressed as a
polynomial function, the IRI can be simply calculated by means of the square root of
the sum of the weighted regression coefficients of PSD roughness. (39)

Correlation of IRI and PSD becomes possible based on their PSD-based expression
which made transportation agencies possible to use PSD-based models to precisely
convert IRI to PSI given that PSD roughness of a pavement is known. (39) Sun et al.
also proved that the average of the absolute response of the quarter-car model was



directly proportional to the standard deviation of that response quantity which
correlated the indirect statistics with PSD roughness. They also found that a linear
correlation exists between the IRI and the standard deviation of roughness.(40)

Some new pavement roughness indices were presented based on the PSD concept such
asRIDE, which is based on the sprung mass acceleration response of a reference vehicle
to the pavement profile. It is calculated in the frequency domain by multiplying the
power spectral density (PSD) of the pavement profile by the square of the transfer
function of the sprung mass acceleration of the reference vehicle. The resulting sprung
mass acceleration PSD is integrated over frequency to yield the root-mean-square of the
sprungmass acceleration per unit length of pavement traveled. The sprung mass
acceleration is shown to be the main contributor of dynamic axle loads in heavy trucks,
which relate to vehicle and cargo damage and also to pavement damage. (41)

Wei et al attempted to integrate pavement surface roughness into a roughness index. By
using different wavelet transformation and analysis technique, the useful information
for pavement maintenance management will be extracted. The characteristics of a
pavement roughness profile are identified in both the frequency and distance domains.
It was demonstrated that using appropriately selected analysis methods and wavelet
parameters,detailed roughness features of interest to pavement engineers not currently
available fromsummary roughness statistics can be obtained together with summary
roughness statisticsas part of the roughness survey report for highway agencies. (42)
Wei et al. also pointed out that the use of wavelet transform to overcome can correlate
various convenient numerical indices with one another. In his study, comparisons were
made with four common roughness indices, namely, the international roughness index
(IRI), root mean- square vertical acceleration (RMSVA), mean absolute vertical
acceleration (MAVA), andslope variance (SV). They found that IR, RMSVA, MAVA,
and SV had pair wise coefficients of multiple determination (R?) ranging from 0.18 to
0.75. But wavelet energystatistics had an R? of at least 0.857 with each of the roughness
indices. (43)

2.2 Surface distress

The pavement condition data of surface deterioration are especial important to those
whoare in charge of making decisions on maintenance strategies. The determination of
maintenance tools for a specific project mainly depends on the types of distress that the
surfaces are suffering. Owing to the large quantity of required data, collection methods
typically involve windshield surveys and automated methods (8).

Since the surface deteriorations are highly definition- depended, the determination of
distress can be either subjective (9).In order to standardize the types of distress and



quantify the distress in the same way so that deteriorations at different road sections are
comparable, pavement distress library are developed which is used to identify the
distresses (10). Overall distress indices are developed to quantify the severe degree of
surface deterioration.

Long-Term Pavement Performance (LTPP) proposed a manual to identify the distress
ofpavement. Three types of pavement are involved: asphalt concrete surfaces, Joint
Portland Cement Concrete surfaces, and continuously reinforced concrete surface. The
distresses of each type are classified as shown in Table 2-1 to Table 2-3. (10)

Table 2- 1 Distress of pavement for asphalt concrete surfaces

Category Type
Cracking Fatigue cracking
Block cracking
Edge cracking

Longitudinal cracking

Reflection cracking at joints

Transverse cracking

Patching and Patching deterioration
Potholes
Potholes
Surface Rutting
Deformation
Shoving
Surface Defects Bleeding
Polished aggregate
Raveling
Miscellaneous Lane-to-shoulder dropoff
Distress

Water Bleeding and Pumping

Table 2- 2 Distress of pavement for joint Portland Cement Concrete surfaces



Category Type

Cracking Corner breaks

Durability cracking(“D”
Cracking)
Longitudinal cracking

Transverse cracking

Joint Deficiencies Joints seal damage

Spalling of longitudinal joints

Spalling of transverse joints

Surface Defects Map cracking
Scaling
Polished aggregate
Popouts

Miscellaneous Blowups

distress

Faulting of transverse joints and
cracks
Land-to-shoulder dropoff

Land-to-shoulder separation

Patch/patch deterioration

Water bleeding and pumping

Table 2- 3 Distress of pavement for continuously reinforced concrete surfaces

Category Type

Cracking Durability cracking(“D” Cracking)

Longitudinal cracking

Transverse cracking




Surface Defects Map cracking

Scaling

Polished aggregate

Popouts

Miscellaneous Blowups
distress

Transverse construction joint
deterioration
Land-to-shoulder dropoff

Land-to-shoulder separation

Patch/patch deterioration

Punchouts

Spalling of longitudinal joints

Water bleeding and pumping

Longitudinal joint seal damage

The distress indices listed above are employed by many transportation agencies to
assessthe pavement condition. A national wide survey on the distresses collected by
various transportation agencies indicated that rutting was the universally collected
distress followed by transverse cracking and fatigue cracking which indicate pavement
deformation and fatigue failure (§). Other commonly collected asphalt pavement
distresses data include longitudinal cracking, bleeding and flushing.

Tennessee DOT collects seven types of distress for asphalt pavement. Table 2-4 listed
thetype of each distress and their extents and percentage conversion.

Table 2- 4 Types of distress collected in Tennessee for asphalt pavement

Percentage
Distress Extents (Each conversion
severity)
(Each severity)
Fatigue cracking Affected areas The percentage of
affected




area
Th t f
Longitudinal wheel ‘ ¢ pereentage o
. Cracking length length ofcracking to
pathcracking
length of wheelpath
Patching and Affected areas The p ercentafff‘e Ofd
Pothole affecte
area
Th t f
Block cracking Affected areas © pereentage o
affected
area
Transverse Number of transverse Number of
cracking cracks transverse
cracks
Th t f
Longitudinal Non- _ ¢ percentage o
Cracking length length ofcracking to
wheel path
) length of non- wheel
cracking
path
Lane Joints Joint length The percentage of
length tothe
total section

Since, the pavement management system uses these indices for evaluating the

transportation facilities, it is important to make a good knowledge of pavement distress
data before dealing with the pavement condition data.

The digital image-processing concepts was presented and applied to collect the
pavementcondition data more safety, consistence and cost-effectively. Digital imaging
technology which plays a significant role in the process of pavement data collection
consists of distress-data acquisition and interpretation. (44)

The digital imaging technology is integrated with other advanced technique such as an
illumination assembly to illuminate the region from which the pavement deterioration is
recorded; and a processor in the computer to process and interpret the image to form an
automation inspection system. (45) The utilization of automation inspection system is
beneficial to the collection of pavement condition data at high-speed condition, but to
themonitoring and inspection of bridge management system as well. (46)

Some studies have already proved the effectiveness of using automatic distress
detectingmethod in collecting the pavement condition data. Raman et al. (47) compared



the severity and extent of the transverse crack by statisticalanalysis. The researchers
used analysis of variance for normally distributed data and nonparametric test
(Kruskar—Wallis) in the remaining cases. Statistical comparison of sample and full-
section image data showed that a 5% sampling rate was enough to evaluate transverse
cracks with the precision desired for network-level pavement management in Kansas.

Wang et al. (48) compared the use of an automated cracking survey system with
manual evaluations. The evaluators reviewed and analyzed 5% of the images for each
comparison section. Differences were found between the manual and automated
process;however, it was suggested that these discrepancies may be caused by the low
repeatability of the manual surveys.

The Ontario Ministry of Transportation compared automated and semi-automated
pavement distress collection techniques from three service providers with in-house
manual surveys (49). The study investigated various pavements including surface-
treated,hot-mix asphalt, composite, and PCC pavement. The distress manifestation
index was used for the comparisons. The study found that automated results are
comparable with manual surveys.

The image capturing subsystems included conventional analog-based area-scan, analog
and digital line-scan, laser scanning, and shadow Moire method. Newer
implementationsof image processing include artificial neural net and parallel
processing. (50) Nowadays,the automation inspection system based on image
technology is well developed to identify most of the typical distress on roadway surface
such as cracking (51)(52) (53) and pothole. (54)

However, there are still some unsolved problems in the automation inspection system.
Some environmental factors may have influence on the image capturing of pavement
deterioration, as a result the interpretation of digital pictures will be a difficult job. An
investigation conducted by Florida Department of Transportation (FDOT) indicated
that the HID lighting system introduces a significant level of noise into the images in
both asphalt and concrete pavements, leading to an inability to accurately distinguish
pavement cracks from their background. (55) To date, a large variety of algorithm is
developed and under developing to facilitate the automation inspection system to
identifythe pavement distress more precise and efficiency.

Cheng et al proposed a novel pavement cracking detection algorithm based on fuzzy
logic. The main idea of the proposed method is based on the fact that the crack pixels in
pavement images are “darker than their surroundings and continuous.” First, the
proposed method determines how much darker the pixels are than the surroundings by



deciding thebrightness membership function for gray levels in the difference image.
Second, they mapped the fuzzified image into the crack domain by finding the crack
membership values of the pixels. Third, they checked the connectivity of the darker

pixels to eliminatethe pixels lacking in connectivity. (54)

Mohamed et al. compared traditional and neural classifiers for pavement crack
detection.Results showed the neural network classifier performed slightly better than
the traditionalclassifier on the test data set. However, the parameters needed to be
carefully selected and extensive empirical training performed to achieve good results in
neural classifiers.(55)

Koch et al presented a method for automated pothole detection in asphalt pavement
images based on MATLAB prototype. Based on the geometric properties of a defect
region the potential pothole shape is approximated utilizing morphological thinning and
elliptic regression. Subsequently, the texture inside a potential defect shape is extracted
and compared with the texture of the surrounding non-defect pavement in order to
determine if the region of interest represents an actual pothole. (57)

The image-processing methods often mistakenly treat oil spillages, shadows, and road
markings as distresses because their features are similar to those of distresses.
Therefore, Su et al proposed a dual-light inspection (DLI) method to reduce false
alarms. A field testwas conducted to verify the DLI method. A total of 212 pairs of
images were captured during nighttime, including images of alligator cracks (42 pairs),
manholes (42 pairs), longitudinal cracks (58 pairs), spillages (34 pairs), and road
markings (52 pairs). Twenty percent of the images (i.e.,45 pairs) were used as training
sets to train the classification model. The remaining images were then used to test the
accuracy of the classification model. The accuracy of the DLI method, which uses dual-
light image pairs, was compared with that of the traditional method, which uses
individual images. The DLI cansignificantly improve the accuracy in determining
spillage (traditional: 18%, DLI: 82%) and road markings (traditional: 8%, DLI: 96%).
The DLI is also reasonably accurate in determining other distresses including alligator
cracks (traditional: 95%, DLI: 90%), manholes (traditional: 97%, DLI: 100%), and
longitudinal cracks (traditional: 62%, DLI: 69%).(56)

3. Summary of the DOT survey

3.1 Overview of survey

A questionnaire was created through the Website of office of information technology in
the University of Tennessee, in January 2014. It was normally distributed in March
2014,through the link below:


http://ascelibrary.org/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Kaseko%2C%2BM%2BS)

https://utk.col.qualtrics.com/SE/?SID=SV_9sheS61SoMh3TOR

In the first round, we sent the invitation to state DOT’s Maintenance agency of 41
states and received twenty-four (24) responses, as shown in Table 3. Among all the
respondents,Pennsylvania Department of Transportation is currently conducting a
project through which a pavement asset management system (PAMS) will be
developed. Therefore, they left several questions blank that pertained to how the PAMS
works.

Table 3- 1 List of invited States DOT and response to the Survey
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3.2 Responses of DOTs

The main information gained in this round is summarized below.
Question 1: What types of management systems are used in your agency?

All the respond states own pavement management system. Three of them have their
ownasset management system. DTIMS system is the most popular software that used to
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support pavement management activities, followed by Agile Assets. Some states also
useHighway Pavement Management Application (HPMA) developed by Stantec. It is
also found that a few states developed their own system in supporting pavement
managementactivities such as Washington State which has Washington State Pavement
Management System (WSPMS).

Table 3- 2 Summary of the software that used in supporting PMS

Name Number of State Agency used
Agile Assets 6
dTIMS 7
HPMA 2
Others 2
Total responses 17

Question 2: How does your agency conduct quality assurance for the collected
data?

Eight response agencies (44%) have the standalone system to conduct quality assurance
for collected data; two (11%) are developing the standalone system; two (11%) are
conducting quality assurance through a third-party; and the rest six (33%) are not
specified. This means the state agencies begin to emphasize data quality assurance for
PMS, as a result, more than half of the response states conduct the quality assurance
through a specific system.

0%

33%

M Standalone system

M Standalone system under
development
Through a third-party
44%
B Not specified
11%
B Notsure

11%

Figure 3- 1Results from Question 2



Question 3: On what cycle is the pavement data collected?

Figure 3-2 to Figure 3-4 illustrated the results of the answers. For interstate, all the
response states collect the roughness data (smooth) at least biannually. 89% of the
states collect roughness data annually and 78% of them collect distress data annually.
For stateroute, 44% states collect roughness data annually, 33% biannually, and the rest
states areeither in more than once every two years or in irregular cycles. As for the
distress data ofstate route, 33% states collect roughness data biannually while 33%
annually. 7 out of 18states collect roughness and/or distress data for non-state routes
while 5 of them collect these data either once every two years or less. From this
questions, we can find that the states highway administration make their efforts mainly
on monitoring interstates at high frequency. As for state routes, there seems a tendency
that the monitor frequencies forroughness data are higher than distresses.
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Percentage
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0% -
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Figure 3- 2 Collecting frequency of interstate
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Figure 3- 3 Collecting frequency of state route (Smooth)
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Figure 3- 4 Collecting frequency of state route (Distress)

Question 4: How many centerline miles of roadway does your agency collect each
cycle?

This question illustrated the scales of centerline miles managed by each highway
administration. It can be seen that most of the state highway agencies monitor
centerlinemiles of interstates less than 3000 miles. Meanwhile, the centerline miles of
state route vary different ranging from less than 500 miles to greater than 6000 miles.
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No. of States

<1000

1000-2000
2000-3000
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Centerline Miles

Figure 3- 5 Centerline miles of interstates managed by highway administration
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Figure 3- 6 Centerline miles of state routes managed by highway administration
Question 5: What type of pavement condition data does your agency collect?

It can be seen that all the response states collect pavement condition data of surface
distress and smooth at network level while 56% of the response states collect frictional
properties of pavement surface. Only 13% of the states collect structural capacity at
network level. At project level, roughness data (smooth) are most popular, followed by
structural capacity (64%), surface distress (55%), and frictional properties (50%). All
theabove information is used to determine the specific treatment strategies.
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Figure 3- 7 Types of pavement condition data collected by highway administration
(Network level)
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Figure 3- 8 Types of pavement condition data collected by highway administration
(Project level)

Question 6: Does your agency employ an overall pavement condition index to
describe the following distress?

The overall pavement condition index is employed to describe surface distresses since
thedifferent distresses are summarized and calculated separately. Therefore, the total
index associated with surface distress is needed to reflect the distress level of current
pavement condition. The indices used to describe the distress including Surface
Condition Index (SCI), Performance Index (PI), Surface Rating (SR), Pavement
Condition Rating (PCR), Cracking Index (CI), Overall Pavement Condition (OPC), and
etc. Although the ways of calculation of each index are quite different from each other,
the principles of each index are similar. The finalized index is calculated by weighing
and summarizing each distress type based on the expertise’s experience. The roughness
data was usually quantified by international roughness index (IRI). Some states also
employ a model to transfer IRI into other index such as Ride Quality Index (RQI), Ride
Comfort Index (RCI), Ride Index (RI), etc. Since IRI may vary different. The selection
of these indices may decrease the variability of roughness data in the finalized
roughness index which may be able to reduce errors and improve data quality.
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Figure 3- 9 Use of overall index to describe the pavement condition

Question 7: Is your pavement management system used for support in
determiningmaintenance strategies? What kinds of pavement data do you use for
determining strategies of pavement maintenance?

17 states agencies response this question. 76% of the response states use PMS in
determining maintenance strategies. The other 24% states may determine the
maintenance plans or strategies based on information from specified projects and PMS
don't play an important role in the final decision of maintenance plans. For those who
employ PMS to make the maintenance plans or strategies. The overall pavement
condition indices of surface distress and smoothness are mostly adopted to describe the
pavement condition at network level. At project level, the individual distress especially
surface distress data is used to determine the specified maintenance treatments.
Normally,the decisions are made based on the experience of pavement management
engineers.

Based on the response of this question, the importance of pavement condition data in
decision-making process of maintenance strategies can be ranked as surface distress the
most important, followed by smoothness, frictional properties, and structural capacity.

Table 3- 3 Use of pavement condition data to determining maintenance strategies

Is your pavement management system used for support in determining
maintenance strategies?

Yes,76%; No, 24%

What kinds of pavement data do you use for determining strategies of
pavementmaintenance?
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Question 8: Do you keep the record of pavement maintenance activities? Do you
integrate the maintenance history into the current pavement management system?
Do you include cost information in your maintenance history?

The maintenance histories are important when one conducts cost-benefit analysis or
costeffectiveness analysis on pavement maintenance activities. From the respective of
data quality control, it can be used to identify the abnormal changes in spatial-temporal
seriesof pavement condition data by correlating maintenance history with pavement
conditiondata when some improvements in pavement condition are caused by the
maintenance interference. The answers obtained from these questions indicated that
about three quarters of the response states keep the maintenance record and most of
them are included in PMS. For those who keep the maintenance record, 67% of them
contain costinformation regarding to the maintenance history. The purpose of
introducing cost information in PMS is mainly to conduct cost benefit analysis.

Table 3- 4 Collection of maintenance information in PMS

Do you keep the record of pavement maintenance activities?

Yes 76%; No 18%; Not sure, 6%




Do you integrate the maintenance history into the current pavement
managementsystem?

Yes 92%; No 8%; Not sure, 0%

Do you include cost information in your maintenance history?

Yes 67%; No 33%; Not sure, 0%

Questions 9: What distress data does your agency collect? Where?

This question was used to obtain the general distress data that state agencies collect. For
asphalt pavement, rutting and cracking are the most common collected distresses. Other
surface deterioration such as pothole/patching, raveling, bleeding/flushing may also be

included in some states. For concrete pavement, faulting and spalling are most common
collected distresses. Shattered slab, cracking, and punch-outs are also collected by some

states. A few states also evaluate joint damage; patching/potholes; and failures; etc.
Mostdistresses are collected in single lane where the measuring vehicle ran. A few
states collected distress in multiple lanes. The multiple-lane distress can reflect the
pavement condition data completely and is useful at project level which specified
maintenance treatments and plan are needed. As for network level, the distresses are

collected in the lane or lanes where truck traffic is usually applied.

Table 3- 5 Distresses data collected by state agencies

Asphalt Pavement
Distress Single Multiple
Lane Lanes
Rutting 14 4
Fatigue cracking 13 4
Longitudinal Cracking 14 2
Transverse Cracking 14 3
Map/Block Cracking 8 2
Bleeding/Flushing 6 1

List of others that some states indicated: raveling, patching/potholes, etc.

International roughness index is not included here since it is classified as roughness

data.

Concrete Pavement




Distress Single Multiple
Lane Lanes

Raveling 2 2
Shattered Slab 7 1
Faulting 11 4
Durability Cracking 6 1
Spalling 10 4
Edge Cracking 6 1
Pumping 1 1
Punch-outs 5 2

List of others that some states indicated: general cracking; traverse cracking; Joint
SealDamage; Longitudinal cracking; Patching/potholes; Joint Deterioration; Mid-

slab cracking; failures; etc.

International roughness index is not included here since it is classified as roughness

data.




Question 10: How is the distress data collected?

44% response state highway administration contract with data provider to distress
collection. 39% states perform the data collection by themselves. There are also some
states collected the distress data in both ways. It seems the number of states who prefer
tocontract with a data provider or vendor is close to those prefer in-house collection
(44% versus 39%) Due to the limitation of question, no more information was obtained
for the reason for those states adopting both in-house and contractor collection. The
reasons might be associated with issues such as expenses, devices, etc.

® In-house

m Contracted with
data provider.

Both In-house and
Contracted with
data provider

Figure 3- 10 Way of distress data being collected

Question 11: How is the pavement distress being analyzed?

The semi-automatic image process is the commonly used method to analyze pavement
distresses. In semi-automatic distress identification method, the distresses are manually
identified. Then an automatic process summarizing the individual distresses and
calculating the distress index is employed to obtain the total distress index. Since the
identification of distresses is subjective, the total distress index obtained by different
person may be different. That is the main source of error. The automatic distress
identification method seems to be more objective since no human errors is introduced
through the entire process. However, the algorithms of distress identification method
arestill under development. The errors from algorithms in recognizing and classifying
the distresses may be the main error of the total distress index.
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Figure 3- 11 Ways of distress being analyzed

Question 12: Which of the following activities are utilized by your agency to check
data?

In this question, all the listed procedures were selected by state highway administrators.
This means all these measurements are often adopted by these administrators in
assuring the pavement condition data quality. Meanwhile, it can be found that some
states listed other activities that they adopted during data collecting procedure. These
activities can also be utilized in the procedure of data quality control and assurance for
Tennessee DOT.

Before data collection, it noted that the field calibration of testing equipment was
selectedby all the response states. The field calibration will be performed to assure the
consistence of pavement condition data. This step will eliminate the error introduced by
devices. It is recommended that the testing equipment be calibrated in a specified
section which refers to as calibration section. This section is used to calibrate the
measurement of roughness data such as longitudinal elevation for IRI and transverse
elevation for ruttingdepth. The purpose of calibration section is to evaluate the accuracy
and repeatability oftesting equipment. By the calibration result, the state highway
administrators can decidewhether the testing equipment is suitable for the continuous
collecting the pavement condition data.

During the data collection, equipment and data monitoring should be required. This will
directly affect the data quality. The monitoring of equipment includes whether the
equipment is operating normally, whether the data is recorded normally or there is a
missing data during collection.

After data collection, data proving is the most important part since it will determine the
validation of data and affect the follow-up activities in PMS. All the response states



checked completeness of data after collection. The completeness of data indicated that
how the testing sections cover the total specified sections. Other options after data
collection can also be verification of collected data by statistical analysis; determination
of confidence of collected data; detection of abnormal data by data mining technology.
The data assurance procedures after data collection aim to determine the reliability of
collected data. This is used to estimate how much confidence can be put on the
pavementcondition data. It is also based on this confidence that the payment be made
which is similar to the pay factor in the QC/QA of pavement construction.

Before data collection

Activities Numbers of States used
Equipment adjustment 17
Staff training 15
Testing of known segments for 18
verificationof
equipment

Others: Statistical Tests; Annual certification; Field verification, internal data
sampling on photolog viewer; shadow collections; comparison with previous years;
Certify profilerat TTI

During data collection

Activities Numbers of States used
Requirements for equipment 17
operation
Data monitoring 18

Others: Blind ratings of same sections by a rater; Audits by 3rd party




After data collection

Activities Numbers of States used
Verification of collected data by 6
statisticalanalysis
Verification of collected data by a 3
third-party
Determination of confidence of
10
collecteddata
Check for abnormal data 16
Check for missing data 18
Comparison with time-history 12
data

Question 13: Which of the following parameters do you use for evaluating the
acceptance or confidence of data collection?

Individual distresses are recognized as the most common way to evaluating the
confidence of data collection. Since the individual distresses are measured through
images captured from the pavement surface, the severity and extents can be re-
evaluated by the highway administrations before they accepted these data. Those
roughness data, however, is not the desirable parameters that can be used for evaluating
the data confidence. These roughness data are highly dependent of the longitudinal and
transverseprofiles on which the pavement roughness indices and rutting depth were
determined.

Some states prefer to use synthesized index when determining the acceptance or
confidence of data collection. These indices contain information that users will be
interested in including roughness data; distress data, etc. However, there are still some
drawbacks when these indices are used. Since the synthesized indices are calculated
fromeach individual distress, the errors from the individual distresses may be
eliminated whenthe calculations are perform. In another word, the bias of synthesized
indices is determined not only by errors from the individual distress but by the ways of
how those synthesized indices are calculated as well.




Answers Number of States
used

Synthesized index 7

Individual distress classifications (severity and 12

extents)

Other methods listed are: digital images; verification by video; passing the
audits

Question 14: What percentage of collected data is typically considered invalid and
required correction?

It can be seen that about 61% of the response states thought their invalid data are less
than 5%. Other 17% ranges from 5% to 10%. The rest 22% states were not sure the
exactpercentage of invalid data in their PMS. The invalid data are those data with
obvious mistakes, such as incomplete data, missing data, abnormal data, etc. In the
previous quarterly report, the research team evaluated the completeness of pavement
condition data. The results indicated that the percentages of missing data and invalid
data are usually less than 5%. This means that the data quality of PMS in Tennessee
state may represent the most states in U.S.

W Less than 5%
E5to 10%
More than 10%

m Notsure

Figure 3- 12 Percentage of invalid data

Question 15: Based on your experience, please rate the following factors in order
ofthe amount impact each has on data quality.

Based on the response of this question, the engineers rank the device calibration as the
most importance factors that impact the data quality, followed by personnel training,
sensor accuracy, accuracy of internal measurement, system that is used to process the
rawdata, weather and testing conditions, and speed of testing vehicles. The guideline of
data quality control and assurance will reflect these points.
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Figure 3- 13 Scores of different influence factors on data quality
3.3 Summary and Conclusions

From the current response of this survey the team has found out that:

e The state agencies are aware of the data quality issues during the data collecting.
Many states agencies have already performed data quality control procedure either
in-house or through third-party

e The interstates were monitored at high frequency and the roughness data had a
highermonitoring frequency than distress data for state routes.

e Some states collected distress data in-house while others prefers to contract with
dataprovider. There are also a few states adopt both methods to collect data.
Furthermore,the common used way to interpret distress image is to use semi-
automatic image process.

e To assure the data quality, the field calibration of testing equipment is the most
selected steps before data collection. During the collection, monitoring of
equipmentis selected by all the states. After the data collection, all the response
states checked completeness of data.

e Individual distresses are recognized as the most common way to evaluating the
confidence of data collection.

e The engineers rank the device calibration as the most importance factors that impact
the data quality, followed by personnel training, sensor accuracy, accuracy of
internalmeasurement, system that is used to process the raw data, weather and
testing conditions, and speed of testing vehicles.

It was found that many states had already realized the importance of data quality
control and some of them already adopted or are developing a standalone system to
perform data quality control. However, there is no consensus on how to perform data



quality control and assurance. The states have different ideas on evaluating the
acceptance or confidence of pavement condition data. Since the participants of
questionnaire are from pavement management division of each state DOTs, the
information that provided will reflect the current state-of-practice in data quality control
and assurance in PMS.



4. Data quality management framework

4.1 Quality management components

The data quality management consists of quality assessment, quality design, and quality

monitoring.

Quality Quality
monitoring assessement

Quality
design

Figure 4- 1 Phase involved in providing quality information

(1) Quality design

The data rules are designed to perform data assessment. The data rules specify the
criteriaof acceptance. Some principles of data rules need to be followed.

Variability

The criteria for variability consist of two parts: 1) The collected data are repeatable.
This means the data collected from the same testing equipment are repeatable under the
same testing condition, whereas the data collected from the different testing equipment
are repeatable under the same testing condition; 2) The difference of collected data
from bothsides are low. The roughness data (IRI and rut depth) are collected from left
and right wheel path, respectively. The difference of collected data should be within the
allowable tolerance difference.

Validity
The criteria for validity are to specify the reasonable ranges of collected data. Any data

out of the reasonable ranges is considered as the abnormal data. They should be re-
checked by the data provider and re-processed or re-collected based on request.



Consistency

The requirement for consistency means the change of collected data from one wheel
pathshould be consistent with that from another. The trend line which illustrates the
change ofindices over time should follow the normal direction. The abnormal change of
trend line may be the indication of abnormal data or other interference such as
maintenance actions.

Logicality

The change of different types of data should be consistent with each other. There are
interrelationships between different types of indices. These should also be considered
when the quality of data is designed,

(2) Quality assessment

In quality assessment process, the overall quality of data provided by the vendor should
be estimated. The content of quality assessment includes: the data content, data
formationand structure. The checklist of pavement condition data may include:

1) Completeness;

2) Correctness;

3) Tolerance of the invalid data;

4) Variability; and

5) Consistency.

(3) Quality Monitoring

During the production, the data collecting process should be monitored from the
beginning of equipment verification till the end of the data delivery. The collected data
should be checked periodically to ensure that:

1) The operation of testing equipment is normal;

2) Data production is conducted in accordance with the expectation;

3) Collected data are within the expected range of value;

The results of quality monitoring should be reported as a part of quality management
report.

4.2 Quality classification of pavement condition data

The purpose of data quality management is to ensure high-quality data which can be
usedto correctly perform maintenance and rehabilitation (M&R) analyses. Therefore,
the dataquality is classified in terms of different purposes. In this study, the data quality

is classified into basic quality and analytical quality.

The purpose of basic quality is to estimate whether the collected data are within the



expected ranges. When the basic quality of data is estimated, those sections in which
the collected data were obvious abnormal or out of the range will be double checked.
Thedate within those sections may either be re-collected or re-processed.

The purpose of analytical quality is to evaluate the suitability of data which can be used
to perform M&R analyses. The analytical quality is conducted based on the result of
basic quality. The indicators which are used to evaluate basis quality and analytical
quality are listed in Table 4-1.

Table 4- 1 Data used for quality classification

Data used for basis Data used for analytical
quality quality
IRILT; IRIRT;

Number of data record;
|IRILT' - IRIRT|;RUTLT;

Latest maintenance
RUTRT;

record;
|RUTLT - RUTRT|;

R square of the fitting

PDIL
model.Performance

curve

4.2.1 Basic quality

Data used for estimating basis quality include: IRI from both side, rut depth from both
sides, the difference of IRI and rut depth from both sides and pavement distress index
(PDI). The definition of basic quality of data is listed in Table 4-2. The collected data
of high-quality should be in accordance with the range specified in Table 4-3, Table 4-4
andTable 4-5.

IRI and rut depth are collected in both wheel paths. The pavement serviceability index
(PSI) is calculated from IRI. The representative value of PSI and rut depth for a section
isthe average of value from both wheel paths. Therefore, the variability of PSI and rut
depth can be represented by the difference of both paths. With the increase of
difference of IRI and rut depth from both paths, the variability of PSI and rut depth
increases. The

representativeness of the average value of PSI and rut depth for a section is
compromised.Sections with differences of IRI and rut depth out of range are classified
as medium for quality level.

The pavement condition data are classified as low quality if either the value of IRI, rut
depth or the difference between both sides is out of range.



Table 4- 2 Definition of basic quality

Quality
level

Requirements

High

e Rut depth and IRI are within the range in
Table4-3.

e Difference of IRI and rut depth between
twowheel paths is within the limit in Table
4-5.

e Distress data are within the limit in Table
4-4,
All requirements above are met

Medium

e Rut depth and IRI are within the range in
Table4-3.

e Differences of IRI and rut depth between
twowheel paths are out of the limit in
Table 4-5.

e Distress data are within the limit in Table
4-4.
All requirements above are met

Low

e Rut depth and IRI are out of the range in
Table 4-3.

e Differences of IRI and rut depth between
twowheel paths are out of the limit in
Table 4-5.
Distress data are out of the limit in Table 4-4.

Table 4- 3 Expected value of roughness data

Item Expected Percent within
s Values limits

IRI 20.0-400.0 100
n/mi

Rut 0-1.00 in 100
dept




Table 4- 4 Expected value of distress data

Tte Expected Percent
Values (Sum of within
ms . .
each severity) limits
Patt 0-100 100
ern
crac
ks*
Pat 0-100 100
ch

Pattern cracks are the sum of each severity of fatigue cracks and block cracks.

Table 4- 5 Expected value of difference between two wheel paths

. Percent within
Items Criteria limits
Difference of IRI between interstates Less than 10.0
) ) . 95%
two sides, in./mi. Others Less than 30.0
Difference of Rut between two sides, in. | Less than 0.20 95%

The purpose of basic quality analysis is to evaluate whether the collected data can
represent the pavement condition. Data with high quality can accurately and precisely
represent the current pavement condition. Due to the possible bias between two wheel
paths, data with medium data quality overestimate one wheel path and underestimate
theother.

Table 4-5 lists the tolerance of difference of roughness data between two wheel paths. It
indicates that the difference of value between two wheel paths is allowed. The criteria
of difference were determined by analyzing the historical data value. The large
difference ofvalue between two wheel paths may be the result of surface distresses on
one wheel-path and no distresses on the other. The average value may not accurately or
precisely represent real pavement condition. Note that the difference of value (IRI and
rut depth) between two paths is allowed. However, if the percentage of out-of-range
sections increases, the representativeness of average value is compromised. Therefore,
if the differences of value between two wheel paths are larger than the limit in Table 4-
5, the data quality is classified as medium.



4.2.2 Analytical quality

Data used for estimating analytical quality include: the number of data records for
curving fitting; latest maintenance records; R square of the fitting model; trend of
performance curve. The definition of analytical quality of data was listed in Table 4-6.

The number of data record depends on the collection frequency of data. Normally, the
roughness data were collected once a year on interstates and once every two years on
state routes. The distress data were normally collected once every two years. Note that
the more data used for fitting the curve, the higher reliability of the performance curve
will be. The analytical quality of data is classified as “High-", if the number of data was
lower.

The performance curve indicated the performance change over time. The normal
changeof performance curve shows the performance decreased over time. However,
due to pavement maintenance actions, the trend of performance curve might be
different. Withthe latest maintenance actions, the data before the latest maintenance
action can be excluded in the M&R analysis by assuming that these data have little
influence on thetrend of performance curve after latest maintenance action.

R square of the fitting model is an indicator to evaluate the goodness-of-fit. The higher
R square is, the better the performance curve will be and the more reliable the M&R

resultswill be. The data quality is determined by R square.

Table 4- 6 Definition of analytical quality

Quality Requirements
level
High e Collecting frequency:

(Roughness data: 1 times/year for
interstates; 2times/year for state routes;
Distress data: 2 times/year for all roads.)

e R square of the fitting model is greater
than 0.6.

e Latest maintenance actions are recorded.

e Trend of performance curve is normal

e All requirements above are met




High-

Collecting frequency:

(Roughness data: 1-1.5 times/year for
interstates;2-2.5 times/year for state routes;
Distress data: 2-

2.5 times/year for all roads.)

R square of the fitting model is greater
than 0.6.

No latest maintenance records
Trend of performance curve is normal

All requirements above are met

Medium

R square of the fitting model is 0.2-0.6.
Trend of performance curve is normal
No latest maintenance records

All requirements above are met

Low

R square of the fitting model is less than
0.2.

Trend of performance curve is abnormal
One of the above requirement is met

Incomplete

Collecting frequency:

(The number of data is less than 30% of the
number of years for all roads.)

No latest maintenance records
All requirements above are met




5. Evaluation of current pavement condition data

In this part, the completeness and validity of current PMS data were evaluated. Both
completeness and validity are considered as the basic quality of pavement condition
data.

The completeness check was conducted to estimate the percentage of missing data. It
provided a general estimation of the total amount of data that can be used for
representingcurrent pavement condition. The total segments occurred in the HPMA are
listed in Table5-1. The road segment was identified in accordance with the following
items, including, HR_ ROUTCOD, HR_COUNTY, HR CNTYSQ, HR ROUTTYP,
HR ROUTNUM, HR ROUTAUX, and HR_DIRECTN. Other types of highway
include functional route and local routes which is not classified as state route and is
managed by TDOT. Since the majority of highways are Interstates or State routes, the
rest was not included in this study.

Table 5- 1 Number of segments for each type in HPMA (roughness data)

Type of highway ID in Total collected Percen
HPMA mileage tage,%
Interstate I 3708 16.1
State route SR 19022 82.5
Others 0A,0E,0F,0 330.7 1.4
h,T,0

5.1 Completeness of pavement condition data

The total coverage of pavement condition data is defined as,

Tot.Coverage = %:’mf (Eq. 5-1)

Where, M, is the actual collected length; Moyeriay is the overlaid length; M, is the total
length of the collected segments.

In HPMA, each segment was generally reported at one-tenth of a mile. The length of
the last sub-segment of each segment is usually less than 0.1 mile. The actual collected
length is calculated by summing up the length of each sub-segment as listed in Eq. 2.
Thelength of each sub-segment (d;) is the difference of “Beg_mil” and “End_mil”.

Ma = E di (Eq 5-2)

Where, d; = (End_mil) — (Beg_mil).

The total length of the collected segments, Mp is calculated by summing up the lengths
ofeach segment (L;), as listed in Eq. 3.




Mp = E Li (Eq 5'3)

The overlaid length (4;) is determined by the difference of actual collected length of
segment d; and length L; of each segment. If 4; >0, there is overlaid within one
segment; If 4; <0, it means there are gaps within the segment; If 4; =0, it means the
collected lengthfully covers the segment.

A= ) d, — L; (Eq 5_4)

Figure 5-1 and Figure 5-2 illustrate the coverage and total collected length of roughness
and rutting. The coverage after 2002 were generally greater than 90%. Before 2002, the
total coverage ranged from 20% to 90%. In 1995, the actual collected length was only
80.52 miles. Comparing with other years, it can be inferred that there was something
disturbed the data production in 1995. It can also be seen that the total collected length
ofroughness and rutting data tended to increase after 2002.
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Figure 5- 1 Total coverage of pavement condition data (Roughness/Rutting)
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Figure 5- 2 Collected lengths (Roughness/Rutting)

Figure 5-3 and Figure 5-4 illustrate the coverage and total collected length of distress
data.The collection of distress data started from 1998. The coverage of distress data
was generally greater than 80%. The total collected length of distress data were from
7000 miles to 8000 mile annually.
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Figure 5- 3 Total coverage of pavement condition data (Pavement distress data)
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Figure 5- 4 Collected lengths (Pavement distress data)

5.2 Evaluation of abnormal data

The process of validity check is to identify those data out of the reasonable ranges.
Table5-2 listed the expected values for distress for some state agencies. According to
the historical data from HPMA, the expected values for distress for TDOT were listed
in Table 4-3.

Table 5- 2 Agency expected values for distress

Distress Colorado! Nebraska? Oklahoma’®
IRI 800 in./mi. +190 in./mi. 20-600 in./mi.
Rut Depth 1.51n +0.2 in. 0-1.25 in.
Faulting - +0.04 in. 0-0.8 in.

Note: 1) the maximum expected values for each one-tenth of a mile; 2) maximum
increase of expected value from previous year’s survey; 3) the maximum expected
valuesfor each 0.01-mile.

The length of road sections with abnormal data is illustrated in Figure 5-5 and Figure 5-
6.Figure 5-5 indicates that the length of sections with IRI out of range was less than 10
miles except for 2002 (15.785 mile). Comparing with the total collected length, the
ratio of abnormal data was less than 1%. Figure 5-6 illustrates the length of sections
with abnormal rut data. In 2002, the length of sections with rut depth greater than 1.25
in. was 5718 miles for the left side and 552 miles for the right side. This means over
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90% collected segments had abnormal data in the left side while about 10% collected
segments in the right side. There might be something wrong with either the data
collection equipment or data post-processing. The length of abnormal data seemed
reasonable on other years.
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Figure 5- 5 Length of sections with abnormal data (IRI out of range)
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Figure 5- 6 Length of sections with abnormal data (rut depth out of range, since 2000)

Generally speaking, the criteria for expected value in Table 4-3 seem reasonable.
Comparing with other states in Table 5-2, the recommended ranges are covered by the
ranges specified by other states. By applying these criteria, the agency can assess the
basic quality of data production and determine whether some sections with out-of-range
data needs to be re-collected or re-processed before accepted.



According to the expected value in Table 4-4, the length of road sections in which the
distresses were out of range was listed in Table 5-5. The abnormal distress data were
observed before 2008, whereas no section was found to have abnormal distress data
after2008.

Table 5- 3 Length of section containing out-of-range distress data

Ye Length of out-of-range
ar sections
19 13.8
98

19 147.31
99

20 0

00

20 38.69
02

20 45.02
03

20 2.3
04

20 21.24
05

20 11.42
06

20 49
07

20 129.37
08

20 0

09

20 0

10

20 0

11

20 0

12

20 0

13

5.3 Explore the function of completeness check in HPMA

The highway data check function in HPMA could be found from “Data Update” menu.
Itcan check for completeness, pavement type and width, condition, and work history.

In the completeness part, the following types were activated to be checked by



users.(SeeFigure 5-7)

e Landmarks/Events, which is reported in total counts of Landmarks/Events or
noLandmark/Event data;

e Administrative, which is reported in length of highway gaps, length of no data
occurrence;

e Jurisdictions, which is reported in length of highway gaps, length of no data
occurrence;

¢ Environment, which is reported in length of highway gaps, length of no data
occurrence;

e Geometric, which is reported in length of highway gaps, length of no data
occurrence;

e Shoulders, which is reported in length of highway gaps, length of no data
occurrence;

e Traffic history, which is reported in length of highway gaps, length of no data

occurrence;

¢ Roughness/Rut, which is reported in length of highway gaps, length of no data
occurrence;

e Distress, which is reported in length of highway gaps, length of no data
occurrence.

The some of these above data have seldom changed since they were put into the
HPMA, such as landmarks/events, administrative, jurisdictions, environment, etc.
Others may change accompanied with the pavement maintenance or rehabilitation, such
as geometric,shoulders. The traffic history, roughness/rut and distress will change every
year when new recorded data are added.
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Route Number Diata Twpe ta Check:
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Route Aux I Hane Administrative Data‘rear From: 2008
Direction: .lJEuns.d\chnns To: | 2008
rvironmenkt
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County: Choulders Data Interval [mil: | 0.000
- [far images]
. Traffic Histary
Seq: Fia /|
M . Result Listing: @) Detailed
Distress
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Ramp ID Project Segments
From: Project Detailz -
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Cores 7 View Result Table
ASeIect... | ‘ @? Clear | Dosuments S

Figure 5- 7 Interface of data completeness check in HPMA



In the “pavement type/width” part, the user can check with the roadway geometric data
such as pavement width, numbers of lanes, etc (see Figure 5-8). It consists of three
mainoptions.
e The pavement type with project segment and/or distress data reported the record
conflicts on pavement type and pavement distress type (see Figure 5-9);
e Pavement width with project segment reported the inconsistency of pavement
width in project and geometry (see Figure 5-10);
e Pavement width/No. of Lanes reported the segments less than selected lane
width(Standard land width-Check difference) and other pavement width
information about the total length of selected segment (see Figure 5-11).
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Figure 5- 8 Interface of checking pavement type and width in HPMA
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Highway Data Pavement Type Check Message Log
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1 40 3 1F 1] 5.460 - 8.770: pavement type CON in geom, BIT in distress

1 40 11 1M 0 4,080 - 4.190: pavement type CON in geom, BIT in distress

1 40 11 1M i] 5.630 - 5.750: pavement type CON in geom, BIT in distress

1 40 11 1F 1] 4,080 - 4.190: pavement type CON in geom, BIT in distress

1 40 11 1F ] 5.630 - 5.750: pavement type CON in geom, BIT in distress

1 40 19 1M 1] 28.020 - 28.120: pavement type CON in geom, BIT in distress
1 40 13 1P 0 16.140 - 16.220: pavement type CON in geom, BIT in distress
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1 40 22 1M ] 13.170 - 13.250: pavement type CON in geom, BIT in distress
1 40 22 1F 1] 13.150 - 13.170: pavement type CON in geom, BIT in distress
1 40 22 1P 1] 13.170 - 13.250: pavement type CON in geom, BIT in distress
1 40 24 1F ] T7.980 - 8.150: pavement type CON in geom, BIT in distress -
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Figure 5- 9 Report of record conflicts on pavement type and pavement distress
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4 [om 3

Figure 5- 11 Report of lane width information of the selected segments

In the “condition” part, the user can check with the completeness of pavement
conditiondata. (See Figure 5-12) After selecting the interested segments and clicking
“View Results”, a table showed the record of roughness data and distress data will pop
out. It will reveal details of the missing data of pavement roughness and/or distress in
each segments involved in this selection, including:

e Highway ID information;

e “Rlength” and “D length” length of segments that don’t have roughness data
(IRTand RUT);



e “Gap length” length of segments that have data gaps.

An example of report of completeness of roughness and distress was illustrated in
Figure5-13.
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Figure 5- 12Interface of checking pavement condition data in HPMA
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Figure 5- 13 Report of roughness and distress completeness of selected segments

In the “Work history” part, the user can check with the maintenance record of selected
pavement segments. (See Figure 5-14) The detailed information will be reported in the



table by clicking the “View results”. (See Figure 5-15) It would illustrate the length of
segments with no construction and/or maintenance.

|

Data Check Repart Log File:| C:AHPRA_THoutputy || by wchlk log | g [Ziew Log
Highway Filter for Data Check Completeness |_| Pave. Type / Width |_| Condition | Work History
Route: | | |Z||| Interstate |

Foute Number Ijl

Route Aux ID: | |Z||| Maone |

Direction: ek for Wissing -

County: | IZH | | Check for No Maintenance for Last Years

[ seq: E

Interchange #: —U‘
Ramp ID: =] |

[ Wiew Resuilts

EFrom|  0.000]|
E% | oo

ASeIect... @v Clear
Il

Figure 5- 14 Interface of checking work history in HPMA

Work History Check
Date: 2014/04/07 14:12:49

Hwy Filter: RT:I , #:40, Yr:2002

I 40 3 1M a 8.460 - 8.750 : No Construction
I 40 3 1M 1] 8.750 - §.770 : No Construction
I 40 3 1P 1] 8.460 - §.750 : No Construction
I 40 3 1B 1] 8.750 - §.770 : No Construction
I 40 9 1M u] 0.000 - 0.650 : No Construction
I 40 9 1M a 0.650 - 0.660 : No Conatruction
I 40 3 1P a 0.000 - 0.650 : No Construction
I 40 3 1P a 0.650 - 0.660 : No Construction
I 40 11 1M a T7.120 - 7.140 : No Construction
I 40 11 1B a T7.120 - 7.140 : No Construction
I 40 15 1M a 1.960 - 5.340 : No Construction
I 40 15 1M a 5.340 - 5.930 : No Construction
I 40 15 1M 1] 5.930 - 5.940 : No Construction
I 40 15 1M 1] 5.940 - 5.950 : No Construction
I 40 15 1M 1] 5.950 - 6.010 : No Construction
< [ttty

Figure 5- 15 Interface of checking work history in HPMA



6. Evaluation of variability of roughness data

Variability describes the bias and dispersion of series of measurements to a true value
ora reference value. It consists of accuracy and precision. Accuracy can be considered
as systematic errors, whereas precision can be considered as random errors. These
errors generate data variability and cause uncertainty on pavement evaluation and
maintenancedecision. To better understanding the data variability, a systematic
evaluation of variability of roughness data was conducted.

6.1 Methodology

The variability of roughness data was evaluated in terms of different pavement
condition.The pavement conditions were classified based on pavement distress index
(PDI). Figure6-1 illustrates the analysis scheme. The roughness data were first grouped
into “Interstates” and “State routes”. For each route type, the data were grouped based
on the PDI value. There were three scenarios considered: PDI=5, 2.5<PDI<5, and
PDI<2.5.

A J

PDI=5

k. J

—| State Route

2.5<PDI<5

—*  PDI=25

Year

PDI=5

Y

——  State Route 2.5<PDI<5

PDI=2.5

L

Figure 6- 1 Analysis scheme for roughness data

To evaluate the data variability, the following statistics parameters were used.

e Sum of squares due to error, SSE;
e Mean squared error, MSE;
e Root means squared error, RMSE;

Assume that X(x1,X2,...,Xn) and Y(y1,y2,...,yn) represent the pavement roughness data



collected from each side. SSE is the sum of square difference (d*) from the measured
point to equity line as shown in Eq. 6-1.

SSE=%1",(x; — yi)? (Eq. 6-1)

The MSE is the mean of square difference is calculated as Eq. 6-2,

SSE 1
MSE =-——=~ =1 (s = vi)? (Eq. 5-2)

The RMSE is determined by Eq. 6-3.

SSE 1
RMSE = [BF = [y G- 32 (Eq. 6:3)

The RMSE indicated the overall difference of roughness data between two sides. The
higher the RMSE is, the higher difference of IRI value (or rutting depth) between two
sides will be.

Matched pairs tests were used to study the mean difference of data from both sides. The
matched pairs tests were conducted by assuming the two population distributions are
normal with unequal variances and the two random samples are independent. In this
study, the hypothesis was:

H{J:Ju'Ieft — Upight = 0

Hy:tiert — Hgne 0

_ Hiert = Hright — 0
.5'12 .5'22

ny n;

T.5.:t

For a level a, Type I error rate,

Reject Hy if |t] > tq o

For a specified level a, the approximate confidence interval for fr — [yt is



A L R

Where, the t percentile has

_ (ny—1)(ny,—1) . _ 5% iny
df T (1-0)%Mmy-1)+c% (np—-1) with = E +5_22
ny nz

6.2 Variability of International roughness index

The results of RMSEs for Interstate and State route at different PDI levels were
illustrated in Figure 6-2 and Figure 6-3. The RMSEs indicates the bias of measured
points towards the equity line. The lower the RMSE is, the closer the measured value
from both sides will be.

Both Figure 6-2 and Figure 6-3 indicate that the RMSEs increased with the decreasing
ofPDI for interstates in 6 out of 12 years while that for state routes in 10 out of 12
years. This means the pavement distresses do affect riding of the test vehicle. Data
variability increased as the pavement performance decreased. There was a more
significant influence of PDI on IRI for state routes than for interstates. RMSE values
for interstate were lower than that for state routes. The lowest RMSEs were round 20.0
in./mi. for stateroutes, whereas the largest RMSEs were round from 10.0 to 25.0 in./mi
for interstates. This means the variability of IRI for interstates were significantly lower
than state routes.Based on RMSEs result, it seemed that IRI results for interstates were
generally less affected by the pavement distress and exhibited a lower variability.
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Figure 6- 2 RMSE of IRI (Interstates)
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Figure 6- 3 RMSE of IRI (State Routes)

Figure 6-4 illustrates the results for matched pairs test. The error bar on each column
indicates the 95% confidence interval. If zero falls down within the range of confidence
interval, the mean value for IRI from both sides were statistically identical. It can be
seenthat:

The mean difference of IRI was generally less than zero for both interstate and
state route, indicating the mean IRI from left side was lower than right side.
Notethat results in 2002 and 2003 should be excluded since the samples
population inthese years was small.

With the decreasing of PDI, the mean difference of IRI seems to be increasing
which indicated that pavement distress may increase the variability of IRI.

The mean difference of IRI for state route was lower than that for interstate
whichindicated the variability of IRI for interstate was lower than state route.
Since the pavement performance of interstate is generally better than state route,
it can be concluded a lower mean difference of IRI may be an indication of the
better pavement condition.

Lower mean difference of IRI and larger confidence interval may be the
indication of good quality for pavement condition data. For example, quality of
pavement condition data in 2007, 2010 and 2012 seems better than that in 2002
and 2003 for interstate.

The mean of IRI from left side was generally lower than right side. This
indicatedthat the pavement surface seems smoother on the left side than on
right.
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6.3 Variability of rut depth

The results of RMSEs for Interstate and State route at different PDI levels were
illustrated in Figure 6-5 to Figure 6-6. One may not find:



e [t illustrated that 6 out of 12 years showed a trend of increasing of RMSEs with
the decreasing of PDI for state routes. This means the PDI seemed to affect the
rutting depth in some degree for state routes.

e [t was also found that RMSEs for interstates seemed a slight lower than state
routes which means the variability of rutting depth from both sides for state
routeswas larger.

e Itindicated that in calendar year 2002, the variability of rutting depth is greatest
among all the 12 years according to the value of RMSEs in each year. The
variability of rutting depth for interstate showed a more stable trend than state
routes.

Based on RMSE:s result, it seemed that results of rutting depth for interstates were
generally less affected by the pavement distress and exhibited a lower variability given
that the fact that pavement conditions for interstates were better than state routes.
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Figure 6- 5 RMSE of rutting depth (Interstates)
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Figure 6-7 illustrated the results for matched pairs test. It can be seen that:

e The mean differences of rutting depth were generally greater than zero with
PDI>2.5 for interstates except 2009 and 2013. This indicated the rutting depth
inthe left side is larger than the right for interstates.

e [t seemed that the data quality became stable after 2003. And the changes of
rutting depth from both sides were less than 0.05 in.

e The results indicated that rutting depth from both sides were not statistical
identical. However, it can be concluded that the rutting depth from both sides
were very close since the 95% confidence interval were within +0.05 in.
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Figure 6- 7 Difference of rutting depth from both wheels

6.4 Determination of allowable variation of roughness data between two sides

The pavement serviceability index (PSI) is a function of IRI. It is also a synthesized
indexfor making pavement maintenance strategies. The errors of IRI will influence the

variation of PSI.

Given the series {X i }, the mean absolute error AX can be defined as

AY =13 Ay, (Eq. 6-4)

na

Av =1 Z\x - X
it or,

Where, n is the sample number.

The relative error, E., is the ratio of mean absolute error to mean value is defined as



AY
E, == x100% (Eq. 6-5)

The standard deviation O, can be written as

0,= i Zn:(X i X )2
o (Eq.6-6)

The above equation represents the standard deviation when the sample number n— <°.

For the limit number of samples, the unbiased estimation of standard deviation Sx is

written as

S, = — Zn:(Xi_)_()z

n=lis (Eq. 6-7)

For dependent valuable, assume that the relationship between indirect measurement
fand direct measurements, x, can be written as

f= f(x1,x2,...,xn) (Eq. 6-8)
The mean value and absolute error for the measurements can be written as,
X, =X, +&
X, =X, + &,
l_ ‘YH ::\;H +Sn
f:f(ffl,)ez,,)ACn)+E(81,52,,gn) (Eq 6-9)

fcan be represented by Taylor’s series at ()ACI,)ACz,...,)ACn ) as Eq. 6-10.

f(xl.xz...‘.xn)Zf(il,.:rz.....n“r”ﬁzn: ff (x=x, )+ R(x,. 5,00, ) (Eq. 6-10)

i=1 CA‘; r=i
Where: R(Xl s Xy ,...,xn) is the infinitely small part.

Comparing Eq.6-9 with Eq. 6-10, the absolute error can be written as by omitting g, (x)

2



The relative error can be
written as,

The standard deviation of f can be written as

The relative standard deviation of f can be written as

According to the HPMS, the PSI model is
written as

PS] =5% e(—o.oosslel)

The absolute error can be written as,

EPSI: 0.0275% e(—o‘oossleI) °Cm

The relative error can be written as,

The absolute standard deviation of PSI is determined as,

O-PS]: 0.0275% e(—0.00SSxIR]) o IR

The relative standard deviation of PS/ is determined as,

(Eq. 6-12)

(Eq. 6-13)

(Eq. 6-14)

(Eq. 6-15)

(Eq. 6-16)

(Eq. 6-17)

(Eq. 6-18)

(Eq. 6-19)



Eq. 6-19 indicated that the absolute error of PS/ is determined by 7R/ value and its
error. The relationships between absolute error of PSI and IR/ error were illustrated in
Figure 6-

7. It can be seen that the absolute error of PS/ will increase with the increase of IR/
error and decrease of /R/ value. In general, IRI value is no less than 20 in./mi.
Therefore, the curve with IRI of 20 determines the upper limit. Eq. 6-19 represents that
the relative errorof PSI is dependant of /R/ error. The curve in Figure 6-8 can be used to
estimate the relative variance of PSI based on IR/ error.
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Table 4-5 lists the suggested tolerance of variability of roughness data (IRI and rutting
depth) by analyzing the historical data. The tolerance of variability of roughness data is
determined in terms of the route types. For interstates, the percentage of sections with
IRIdifference less than 10.0 in./mi. should be at least 95%. For state route, the tolerance
of IRI difference is wider comparing with the interstates. The percentage of sections
that have higher variations (difference of IRI greater than 30.0 in./mi) in IRI between
two paths should be less than 10%.

Table 6-1 lists the influence of IRI difference on PSI difference. A difference of IRI
with 10.0 in./mi. may generate PSI difference less than 0.1, whereas, a difference of IRI
with 30.0 in./mi can generate PSI/ difference up to 0.2. This means by applying the
requirement in Table 4-5, the expected PS/ difference could be less than 0.1 for
interstates and less than 0.2 for state routes.

Table 6- 1 Influence of IRI difference on PSI difference

Difference of IRI
PSI IRI, between twosides,
inch/mil inches/mile
e 10 30
2.70 112. +0.0 +0.2
0 7 2
2.50 126. +0. +0.
0 07 21
2.20 149. +0. +0.
3 06 18
2.00 166. +0. +0.
6 06 17
1.80 185. +0. +0.
8 05 15




Figure 6-10 and Figure 6-11 illustrate the percentage of sections with the difference of
IRI over the limit for interstates and state routes. The length of sections over limit
before2000 was generally greater than that after 2000. TDOT contracted with two
different service providers at that time. Therefore, the later contractor might utilize new
technology or implement new procedure during collection production which resulted in
less variability of IRI. The percentage over the limits ranged from 5.0% to 7.5% during
2002 to 2013, which was slightly higher than the value in Table 4-6. Therefore, re-
checkor re-collection may be needed based on request from the pavement management
engineers. It is recommended that those sections with PSI value less than 2.70 be re-
checked.
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Figure 6-12 illustrates the percentage over the limit of rut depth difference. The
percentages over limit were less than 5% after 2004. Therefore, the requirement for
rutting depth in Table 4-5 seems reasonable. The percentages over limit were higher
than95% in 2002 and 2003. This means there might be some collection errors in these
two years. Therefore, the rutting data in these years were questionable.

120.0

100.0 96.097.2

00
o
o

o)
o
o

Precentage over limit,%
I
o
o

18.9
20.0 67 113
0.0 n T |.| T T—— T T T |-|-_|___|___I_-_I___I___I_._I_-_
D> H LN PO O HNAD D SHS A DO O DDA D
o I I R M B s R N L e e N I N M N R N M I R A S Y
TR RTRDTRTRDTAR AT AR AR AT AR AR AR AR AT DT AT AT AP

Year

Figure 6- 12 Percentage over the variation limit —rut depth



7. Evaluation of variability of distress data

The major source of errors for distress data usually comes from the misinterpretation of
distressimages. As most state DOTs, TDOT utilizes full-automated approach to interpret
pavement surface distress images. The accuracy of distress data are directly associated with
the quality ofdistress images and distress identification system (or algorithm). AASHTO
PP68-10 also specifies the minimum requirements for an applicable Image and Distress
Identification System(IDIS).

7.1 Source of errors for distress data

The online survey indicated most state agencies are using automatic image and distress
identification system to determine and calculate the extent and severity level of surface
distress. For the automatic distress recognizing system, the quality of image will have
significant influence on the interpretation of distresses. To eliminate the errors of distress
data caused by theimage quality, distress image will be picked up to ensure that only high-
quality images are used for calculating distress extent in the post-processing procedures.

The core of IDIS is to split an image into the areas of interests and the area of background.
Theinterested areas are those areas with distresses and used to calculate the distress extent
and severity level. Due to the complexity of surface features and difference of lighting
conditions when the distresses are imaged, the background noise may affect the
determination of areas of interests. Therefore, many software systems have been or are
being developed to decrease the background noise of the original image so that the
distresses could be easily identified.

Below is an example of a procedure to process an image. Figure 7-1 illustrated the original
image of a crack. The original image is firstly converted into grey-scale images as
illustrated inFigure 7-2. The grey-scale image has the image matrix with values ranging
from 0 to 255, with‘0’ representing the darkest area and ‘255’ representing the lightest
area.

Figure 7- 1 Original image of a crack



Figure 7- 2 Gray-scale image and image matrix

The boundary of a crack can be determined by defining a threshold through which the gray-
scaleimage can be converted into binary image with only two values in the matrix. Figure
7-3 illustrated the binary image of different splitting threshold of gray-scale image. It can
be seen that the threshold of a gray-scale image affect the results of crack boundary
significantly. Figure7-4 illustrated the change of distress areas at different splitting
threshold. It was found that the distress area is sensitive to the threshold. As the threshold
increased from 5 to 32, the distress areas increased 250%. With the increase of the
threshold, both distress extent and severity level will increase. Therefore, a threshold
through which a gray scale image is converted to binary image is an important factor that
influences the precision and accuracy of distress data.
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(a) 32 (b) 18 (c) 13 (d) 8 (e) 5

Figure 7- 3 Binary images at different thresholds
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Figure 7- 4 Change of distress areas at different splitting threshold

To date, there are numerous of algorithm for splitting an objective from a background. The
core of these algorithms is to find a reasonable threshold that can determine the areas of
interest within an image. Unfortunately, due to high variations in image quality and
interference of surface features, it is difficult to find a certain threshold that can be used for
identifying all the distress images. Some factors that influence the threshold for an image
are summarized as below.

1) Surface features
Surface features include pavement marks, surface tire tracks, surface contaminations, etc.
These features significantly influence the interpretation of distress. It is hard to detect these
surface features and eliminate them from the image by automatic distress identification
methods. Imageswith these features may either be moved manually or be excluded in
calculating the distress value. There are also algorithms to detect these surface features.
However, most of them are stillunder development and far from implementation.

2) Background noise
Background noise may be recognized as the objective of interest if the pixel values for
background noise were within the range of objective pixel value. It occurs when the
lighting conditions for the image is weak. For newly constructed asphalt pavement, it may
be more different to recognize a distress since the distress image may have low contrast. In
response tothis issue, contrast enhancement is applied prior to differentiate the background
noise from anobjective. There are also other algorithms, such as smoothing average, to
eliminate the background noise.

From the respective of state highway agencies, one of the most concerns is that how to
quantitatively evaluate the errors of distress data and the consequence of data errors on



maintenance decision. To achieve this goal, the state agencies need to determine the
reference value based on which the errors of distress data can be estimated. The sample
images with known extent and severity level of distresses will be selected to construct a
standard distress database. The difference between the distress value (extent and severity
level) obtained from an Image and Distress Identification System and the reference value
(extent and severity level) can be used to determine the errors of distress data. It should be
note that images at different quality level may also be included in the standard distress
database so that the influence of image qualityon the identification of distress can be
estimated.

7.2 Influence of Variability of Distress Extents on PDI

The cause of variability of distress in extent comes from those distresses that are not
identifiedby the IDIS. Therefore, the measured PDI may be higher than the true value
which results in overestimating the current pavement condition. Eq. 7-1 can be used to
calculate the probabilitythat the distress can be identified.

P(E < E;) = fﬂgtg(x)dx =p
(Eq. 7-1)

Where, E represents for the distress extent; E;is the true value of distress extent at a
specific severity level; g(x) represents for the distribution function; p is the probability that
the specifieddistress can be identified. The distribution function can be determined through
field verificationtest.

Figure 7-5, 7-6 and Figure 7-7 illustrate the distribution of PDI at each severity level by
Monte Carlo simulation. The true value of percentage of fatigue crack (Et) was assumed to
be 50%. It is also assumed that the distribution function g(x) satisfy normal distribution
with mean value of p, and standard deviation of 0. Therefore, the normalized distribution of
measured value satisfiesstandard normal distribution as Eq. 7-2. The distribution
parameters for each scenario can be determined based on Et and P.

ZE~N(01) (Eq. 7-2)

Figure 7-5 (a) and 7-1(b) illustrate the distribution of measured PDI at low severity level.
The cumulative distribution for PDI<3.96 was about 70% when P=0.5. PDI=3.96 was
calculated by assuming distress extent of fatigue cracks was 50% at low severity level
while no fatigue crackswas observed at moderate and high level. This means if all the
present fatigue cracks was at lowseverity level and the probability of all the cracks being
identified was 0.5, the probability that measured PDI equals to or less than the true value



was 0.7. This means the probability that the current pavement condition was overestimated
would be less than 0.3. It is also found that if the probability of all the cracks being
identified was 0.85, there was less likely that the measuredPDI was greater than the true
PDL
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Figure 7- 5 Distribution of measured PDI at low severity level

Figure 7-6 (a) and (b) illustrate the distribution of PDI at moderate severity level. The true
PDIvalue was 3.41. It is found that the cumulative distribution were 50% and 80% for
P=0.5 and P=0.85, respectively. This means if the probability of cracks that can be
identified were 0.5 and 0.85 at moderate severity level, the probability that PDI greater than
the true value would be 0.5and 0.8. This is significantly lower than the scenarios at low
severity level. This indicated there was limited improvement on measured PDI by
increasing the accuracy of extent of fatigue cracking at moderate level Compared to that at

low level.
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Figure 7- 6 Distribution of PDI at moderate severity level



Figure 7-7 (a) and (b) illustrate the distribution of PDI calculated from the measured PDI at
high severity level. It can be seen that if the accuracy of data was low at high severity level,
the accuracy of measured PDI would be compromised. The probability of PDI less than the
true value was only less than 0.6 (cumulative distribution was 60%) with the P=0.5. With
the increaseof accuracy (P from 0.5 to 0.85), the cumulative distribution of PDI<2.6 (the
true value at this severity) was more than 90%. This means there seems less likely that the
measured PDI was greater than the true value.
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Figure 7- 7 Distribution of PDI calculated from the measured PDI at high severity level

FIGURE 7-1 to Figure 7-2 presented the results from simulation by assuming the true
value, measured mean value, and measured standard deviation. These parameters can be
evaluated anddetermined by field verification test through which the results from manual
distress survey can be compared with that from automated survey. The results from manual
survey may be considered as true value. By running multiple automated tests, the measured
mean value and measured standard deviation of automated survey can be determined.
Then, the two parameters,Et and p, at difference scenarios from Equation 6 can be
calculated and the influence of variability of distress data on pavement distress indices can
be evaluated.

The accuracy of extents of distress data has influence on PDI, depending on the distress
severitylevel. At low severity level, when P=0.85, the measured PDI is close to the true
value. At moderated and high severity levels, there is a difference between the measured
PDI and the truePDI, indicating the accuracy of distress increased at higher severity levels.



7.3 Influence of Variability of Distress on PDI

The severity levels of crack-related distresses are defined by the crack width. Figure 7-8
illustrates the general framework of determining crack-related distress content based on
each severity level. The extent of distress at each crack width was firstly calculated. Then,
the extentsof distress at each severity level are summed up in terms of crack width. It can
be seen that theremight be a transition zone in which a crack may be classified into a wrong
severity level. It is evident that the existing of transition zone may potentially generate bias
on PDI calculation. To quantify the influence of transition zone on the calculation of
distress value, the transition ratio curve is established.
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Figure 7- 8 General framework to calculate extent of distress based on severity level

Figure 7-5 illustrates a typical transition ratio curve. The transition ratio ranges from 0 to 1.
Transition ratio of “0” indicates that there is less likely that a crack may be classified into
this level while “1” means there is most likely that a crack may be classified into this level.
fi(w),i = 1,2,3 is the transition function at each severity level. w;.2is the boundary of low
and moderate level, while w>.3 is the boundary of moderate and high level. It can be seen
that cracks whose widths are far away from the transition zone are less likely to be
classified into a wrong level. The sum of transition function at each severity level for an
identified crack with a width wiequals to 1. Eq. 7-3 provides the attribution of the transition
function.

Transition Ratio
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Figure 7- 9 Transition Ratio Curve



filw) =1 if w<w
fsw) =1if w>wy (Eq. 7-3)
i filw) =1

The transition function seems a reasonable way to quantify the influence of variability of
severitylevel on PDI. However, the establishment of a transition function is time-
consuming and varies from different distress identification techniques and algorithms.
Therefore, the transition matrix was presented to quantify the influence of variability of
severity level on PDI. The transition matrix is proposed based on the conception shown in
Figure 7-6. It describes the transition ratio between different severity levels. The
parameters in transition matrix are easily to be determined through field verification tests
by comparing the results from automated survey with those from manual survey. The
transition matrix is expressed as Eq.7-4.

11 Piz  Pi3
P=|P21 P22 P23

P31 Pz P33

(Eq. 7-4)

Where, P(-)is the transition matrix for each type of distress;p;; is the ratio that an
individual

distress at severity level i may be changed into severity level j. (i,j=1,2,3 represent for Low,
Moderate, and High severity). The sum of each row in transition matrix P should be equal
to 1,which is expressed as Eq. 7-5.

pj= I'Szlpl'j' =1 (Eq 7-5)
The original distress vector for individual distress k, D(k)is expressed as Eq. 7-6.
di-t

D(k) = [dk—M

dk—H

(Eq. 7-6)

The adjusted distress value D’(i) can be determined by transition matrix, which is expressed
asEq. 7-7.
D'(k)=D(k)T-P (Eq. 7-7)

The adjusted distress value includes the influence of variability of severity level. It can be
usedas a benchmark to evaluate the impact of variability on distress severity on PDI.

Pavement sections with only block cracks in 2013 were extracted from the database. Four
transition matrices Pz, Py, Py and P were considered as listed in Equation 13. Note that

the values in thetransition matrices were assumed based on experience. The transition



matrix can be determined by comparing the difference between the distress data from
automated survey and manual survey. Pr, Py, and Py only considered the influence of
single severity level, while Puix considered the interaction between severity levels.

[0.75 0.2 0.05]
PR=(0 1 0

Lo 0 1|
1 0 0]

Py =015 0.7 015
L0 01 Eq. 7-8
(1 0 0] (Eq-7-8)

10.05 0.2 0.75]
[0.75 0.2 0.{]5]

0.15 0.7 0.15
0.05 0.2 0.75

P, mix

Figure 7-6 illustrates the comparison between measured PDI and adjusted PDI. The
measured PDI were collected from sections with only wheel path cracks in 2013. The
measured PDI werecalculated by raw distress value while the adjusted PDI were calculated
by the equation above. It can be seen that the adjusted PDI were generally higher than
measured PDI. This means the variability of distress severity may generally overestimate
the current pavement condition.

Figure 7-6 (a) indicates that the variability at low severity level may only influence the
sections with measured PDI greater than 3.5. If the measured PDI is less than 3.5, there is
only slight difference between the measured PDI and adjusted PDI. Figure 7-6 (b) indicates
that there is a significant difference between measured PDI and adjusted PDI with
measured PDI above 2.5. This means the variability at moderate severity level may be
considered as a significant influence factor for the accuracy of PDI. Figure 7-6 (¢)
illustrates an opposite tendency Compared to other scenarios. The measured PDI seems less
than adjusted PDI, which means variability at high severity level may underestimate the
current pavement condition. This is because some distresses at high severity level were
treated as moderate or low level as shown inthe transition matrix, resulting in an increased
adjusted PDI value. Figure 7-6 (d) illustrated an interaction of variability of distress at
different severity level. It is found that there was a significant difference between measured
PDI and adjusted PDI with measured PDI ranging from 2.5 to 4.0. With the increase of
measured PDI, the difference between two indices decreased. Since PDI of 3.0 is the
trigger value in the decision tree used by TDOT, the variability of distress at moderate
severity level may influence the maintenance decisions significantly.
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Figure 7- 10 Comparison between measured PDI and adjusted PDI




8. Evaluation of data variability on pavement maintenance planning

8.1 Framework of Quality Analysis at Network-level

Figure 8-1 illustrates the loop of data quality analysis. Field tests are performed before data
production to verify the test equipment and continue during data production process. The
test results from the field verification tests can be used to evaluate the accuracy and
repeatability of test equipment and estimate the errors between the collected data and the
reference value. By Compared to the data quality requirements, pavement managers can
evaluate the data quality anddecide the acceptance and confidence of the collected data.
The quality analysis can be performed on a specified road network to quantitatively
evaluate the influence of data variabilityon maintenance planning. Based on the results
from quality analysis, suggestions on data quality requirements on next collection period
can be made. Figure 8-1 provides a method through which the requirements for data quality
can be determined. This means the data quality requirements depend on the current
pavement condition and maintenance decision approaches.
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Figure 8- 1 Loop of data quality analysis

8.2 Influence of Data Variability on Maintenance Planning

In order to evaluate the influence of data variability on maintenance planning, the
pavement condition data in 2013 were extracted from PMS which covered 8,093.8
centerline miles of highways. The decision tree in the PMS of TDOT used for this case is
shown in Figure §-2.
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Figure 8- 2 Decision Tree for Maintenance and Rehabilitation analysis

FIGURE 8-3 illustrates the influence of the accuracy of IRI on maintenance planning. Four
morescenarios were analyzed by assuming there are £5% and +£10% errors of IRI value. It
can be seenthat the maintenance planning changes as inclusion of IRI errors. Compared to
the control group,an error of £5% IRI may generate +3.1% errors of percentage of sections
that need to be treated with Code M0O2400 and +2.7% errors of percentage of do-nothing



sections. There were slight changes on sections with other code as well. As the IRI error
increased, the difference between the control group and error groups increased. With +10%

IRI error, the errors of percentage of sections with Code M02400 could be as high as
+6.3%.
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Figure 8- 3 Influence of accuracy of IRI on maintenance planning

FIGURE 8-4 illustrates the influence of accuracy of rut depth on maintenance planning. It
can beseen that the difference between the control group and error group were less than 2%
with the inclusion of £20% rut depth error. This means that there was almost no influence
of rut depth error on maintenance planning. This is because rut depth are generally low and
+20% may still well under the trigger value. It was also found that there was no difference
between control group and error groups for sections with code Recon, 0400, and M0O4200.

This is because these maintenance codes are independent of the rut depth in the decision
tree.
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Figure 8- 4 Influence of accuracy of rut depth on maintenance planning



FIGURE 8-5 illustrates influence of errors of distress extent on maintenance planning. The
distress extent in the error group was 85% to the original distress extent. In another word,
the missing distress extent in error group was 15%. FIGURE 13 indicated that the total
length of sections that need to be maintained decreased if there were missing distress extent
in error group.The percentage of sections with code M0O2400 and O200 increased while
others decreased. In general, with the inclusion of errors in distress extents, there were
slight changes on maintenanceplanning Compared to the control group. Therefore, it can be
concluded that a maximum error ofdistress extents of 85% is sufficient for the purpose of
maintenance and rehabilitation analysis and may not significantly influence the results of
maintenance planning in Tennessee.
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Figure 8- 5 Influence of errors of distress extent on maintenance planning

FIGURE 8-6 illustrates the influence of error of distress severity level on maintenance
planning. Three transition matrices (Pmix-1, P mix2 and P mix-3), which represent different

accuracy of distress identification from high to low, were considered as listed in Equation
14.

709 01 0]
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0 01 009/
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Poiv—3 = [O.ZO 0.65 0.15‘

01 025 065

(Eq. 8-1)

The percentage of sections that need maintenance increased if there were errors in distress



severity level. It was also found that the percentage of sections with code M02400 and
0200decreased while that of sections with code Recon, MO400, 0400, and MO4200
increased. It should be noted that the sum of extent for individual distress of the control
group was the same as the error group. Therefore, the errors of distress severity level
significantly affect the planningresults although all the distresses were correctly identified
and quantified.
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Figure 8- 6 Influence of errors of distress severity level on maintenance planning



9. Evaluation of the influence of maintenance actions on condition data

The maintenance actions may change the general trend of the performance curve. However,
due to some missing maintenance records, it is impossible to identify all the maintenance
actions. Byanalyzing the change of performance indices, it is possible to identify the
maintenance actions through which the performance curve can be modified.

In this part, the influence of maintenance actions on performance indicators was evaluated.
Themaintenance records were selected from the database since 2002.

9.1 Data preparation

The maintenance records were collected from construction record provided by TDOT. The
maintenance record consists of segment information and construction information. The
inventory was listed in Table 9-1. The segment information can be used to identify those
sections containing a maintenance action between two adjacent collecting years.

Table 9- 1 Inventory in maintenance record

Route Type; Route number; County;

Segment information
Start MPand End MP; Year; Length

C.Onstruct.ion Contract No. ; State ID; Federal ID; Let
information date;Cost; Treatment Activities

The pavement condition data consists of roughness data and distress data. The inventory of
roughness data and distress data are listed in Table 9-2. The segment information include
county number (HR COUNTY); route type (HR ROUTTYP); route number
(HR_ROUTNUM); direction (HR DIRECTN); beginning and ending milestone of a
section (HR_ BEGMILE; HR_ENDMILE); collecting year (HR_ DATYEAR); and other
information on the road segment. The information can be used to recognize the sections
that had maintenance actions.

Table 9- 2 Inventory in pavement condition data

HR ROUTCOD; HR COUNTY;
HR _CNTYSQ; HR ROUTTYP;
Segment information | HR_ ROUTNUM; HR ROUTAUX;
HR DIRECTN; HR_DATYEAR;
HR BEGMILE; HR ENDMILE

HR_IRI RT; HR IRI LT; HR RUT RT;
HR RUT LT; HR PSI

PDI-overall index; content and severity of
individual distresses

Roughness data

Distress data




Table 9-3 lists the counties in Tennessee and their available records in the HPMA since

2002.

Table 9- 3 Summary of individual tables for pavement condition data

Number County Available | Number County Available
ID Records ID Records
1 ANDERSON 9202 51 LEWIS 4554
2 BEDFORD 9846 52 LINCOLN 11137
3 BENTON 9093 53 LOUDON 11350
4 BLEDSOE 4344 56 MACON 13834
5 BLOUNT 11411 57 MADISON 11031
6 BRADLEY 11644 58 MARION 6166
7 CAMPBELL 11521 59 MARSHALL 18773
8 CANNON 4994 60 MAURY 16378
9 CARROLL 16404 54 MCMINN 11326
10 CARTER 8284 55 MCNAIRY 17740
11 CHEATHAM | 8417 61 MEIGS 4551
12 CHESTER 5674 62 MONROE 11417
13 CLAIBORNE | 6390 63 MONTGOMERY 15098
14 CLAY 4371 64 MOORE 2663
15 COCKE 11926 65 MORGAN 7196
16 COFFEE 13750 66 OBION 12124
17 CROCKETT 7290 67 OVERTON 9009
18 CUMBERLAND | 17319 68 PERRY 6053
19 DAVIDSON 38380 69 PICKETT 2994
20 DECATUR 8900 70 POLK 7386
21 DEKALB 6260 71 PUTNAM 17207
22 DICKSON 13710 72 RHEA 5441
23 DYER 15145 73 ROANE 13485
24 FAYETTE 17219 74 ROBERTSON 15482
25 FENTRES 7065 75 RUTHERFORD 21993
26 FRANKLIN 11385 76 SCOTT 4459
27 GIBSON 15830 77 SEQUATCHIE 4611
28 GILES 14440 78 SEVIER 11537
29 GRAINGER 6503 79 SHELBY 42713
30 GREENE 19091 80 SMITH 9862
31 GRUNDY 7456 81 STEWART 6635
32 HAMBLEN 7920 82 SULLIVAN 20037
33 HAMILTON 23738 83 SUMNER 16483




34 HANCOCK 4143 &4 TIPTON 7964
35 HARDEMAN | 10632 &5 TROUSDALE | 2766
36 HARDIN 11875 86 UNICOI 7359
37 HAWKINS 10351 87 UNION 4213
38 HAYWOOD 15007 88 VAN BUREN 5040
39 HENDERSON | 16587 89 WARREN 10598
40 HENRY 12194 90 WASHINGTON | 12971
41 HICKMAN 11735 91 WAYNE 9171
42 HOUSTON 3720 92 WEAKLEY 13551
43 HUMPHREYS | 7732 93 WHITE 6371
44 JACKSON 7459 94 WILLIAMSON | 18743
45 JEFFERSON 13307 95 WILSON 17366
46 JOHNSON 5782

47 KNOX 28994

48 LAKE 3249

49 LAUDERDALE | 8562

50 LAWRENCE | 9765

2364 maintenance records out of total 6320 were identified. The pavement condition data
including IRI, rutting depth, and Pavement Distress Index (PDI) of pre and post
maintenance action were extracted from the database. The difference of the indicators of
pre and post maintenance action was calculated. The influence of maintenance actions on
change of pavementindicators were listed as follows.

9.2 Evaluation of maintenance actions on pavement indices
9.2.1 Influence of maintenance actions on change of IRI and PSI

Figure 9-1 illustrated the distribution of initial IRI and change of IRI between two adjacent
collecting years for state routes. Figure 9-1 (a) illustrated the distribution of initial IRI
before maintenance actions. It was found that the mean value of IRI before maintenance
was 105.9 and 91.7 in./mi for right and left side, respectively. The median quantiles for
each side were 98.8 and 86.2 for right and left side, which were close to their mean value.
Figure 9-1 (b) illustrated thedistribution of change of IRI due to the maintenance actions.
The average changes of IRI were 24.8 and 21.1 in./mi for right and left side, respectively.
Similarly, the median quantiles right and left side were close to their mean value. This
means the maintenance actions would decreasethe IRI by 20 in./mi. in average for state
routes.

Meanwhile, it can be seen that the maintenance actions may also increase the initial IRI
(see change of IRI greater than zero). This means the maintenance actions in those sections
would have little effect on the change of IRI comparing with others without the



maintenance actions. It seems that the increase of IRI was limited. Figure 9-1 (b) indicated
that there were less than 10%sections whose increase of IRI were greater than 10 in./mi.
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Figure 9- 1 Distribution of initial IRI and change of IRI (State routes)

Actually, the change of IRI (AIRI) is related to the initial IRI before maintenance action.
As theinitial IRI increased, AIRI increased. However, AIRI will decrease with lower initial
IRI value. Figure 9-2 illustrated the lower limit AIRI. The red dot-line indicated the lower
limit of AIRI. It can be seen that with lower initial IRI, AIRI decrease. In Figure 9-2, IR1, is
greater than IRI;.

Therefore, the probability of AIRI; >0 is greater than AIRI> >0. This indicated that with the
lower initial IRI, the probability that the post-maintenance IRI greater than initial IRI may
increase. In another word, there is no effect of maintenance actions on the trend line of IRI.
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Figure 9-3 illustrated the distribution of initial PSI and change of PSI (APSI). It can be seen
that the average initial PSI for state routes was 3.02 with the standard deviation of 0.51.
There were only a few sections in which the PSIs were over 4.0 or less than 2.0. This
means most of the maintenance actions were triggered at PSI between 2.0 to 4.0. The
distribution of APSI indicatedthat maintenance action increased the PSI by 0.38 in average
with the standard deviation of 0.38.The distribution also indicated that maintenance action
would generally increase PSI by less than 1.0. It was also found that in some sections, the
maintenance action may not significantly increase PSI. In contrast, the PSI was slightly
lower than the initial value which resulted in APSlIless than 0. Figure 6-4 illustrated the
distribution of initial PSI when APSI<O0. It can be seen thatinitial PSI in these sections were
3.27 in average which is higher than the average value for the population (3.02).As the
initial PSI increased, the change of PSI will decrease. Therefore, in some sections with
higher initial PSI, the improvement of PSI after maintenance actions was insignificant.
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Figure 9-5 illustrates the distribution of initial IRI and change of IRI between two adjacent
collecting years for interstates. Figure 9-5 (a) illustrated the distribution of initial IRI before
maintenance actions. It was found that the mean values of initial IRI were higher than the
medianvalue. The IRI from both sides were close to each other. Comparing with Figure 6-
1, both the mean value and median value of initial IRI of interstates were lower than state
routes. Generally, the maintenance actions were triggered with IRI of 60 in./mi. Figure 9-5
(b) illustrated the distribution of change of IRI. It seemed that the maintenance actions
would only decrease the IRIby 7 in./mi. in average. Since the pavement condition of
interstates were generally better than state routes, the decrease of IRI for interstates caused
by maintenance action was less significant than for state routes.
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9- 5 Distribution of initial IRI and change of IRI (Interstates)

Figure 9-6 illustrated the quantile density contours for interstates. It was found that the
change of IRI (AIRI) tend to be close to the zero line (dash line). This indicated the
influence of maintenance action on IRI decreased. Figure 9-5 (b) also indicated that the
median value of AIRIwere close to zero (only -5.2 and -3.7 in./mi. for right and left side),
while the 75% quantiles of AIRI for both sides were greater than 0. This means there were



at least 75% of the sections of which the IRI increased after maintenance actions were
completed. Meanwhile, it can be inferredthat there were less than 10% of the maintained
sections of which the IRI values were increased by 10 in/mi. IRI value of interstates would
be generally decreased by the maintenance actions. If not, the increase of IRI should be less
than 10 in./mi.
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Figure 9- 6 Quantile density contours (IRI in right side for interstates)

Figure 9-7 illustrated the distribution of initial PSI and change of PSI (APSI). It was found
that the initial PSI was 3.64 in average with the standard deviation of 0.51. The distribution
of APSlindicated that the maintenance action on interstate may generally increase PSI by
only 0.13 in average. Comparing with the state routes, the improvements of PSI on
interstates seem limited. This is because the initial PSI for interstates (3.64) was generally
higher than state routes (3.02).Therefore, the increase of PSI for interstates was limited.

Figure 9-8 illustrated the quantile density contours of initial PSI and APSI for interstates. It
can be seen that there were two areas with 90% quantile. One was close to zero line (dash
line) whileanother was greater than zero. The one close to zero line had initial PSI around
4.0 which was higher than the other. This indicated as the initial PSI increased, there was
no significant difference in PSI between pre- and post-maintenance.
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9.2.2 Evaluation of the influence of maintenance actions on rut depth

Figure 9-5 illustrated the distribution of initial rut depth and change of rut depth between
two adjacent collecting years for state routes. Figure 9-5 (a) illustrated the distribution of



initial rut depth before maintenance actions. It can be seen that the average rut depth before
maintenance were around 0.11 in. with the standard deviation around 0.08 in. Meanwhile,
it can be seen that rutting was partially corrected after maintenance actions. The rut depth
was reduced by 0.02 in. in average. It seems that most of the maintenance actions occurred
with the low severity level ofrutting. This is because rutting is not a major issue for asphalt
pavement in Tennessee. Most of the maintenance actions were applied to correct other
distresses or improve the longitudinal roughness.

Figure 9-6 illustrated the quantile density contours for initial rut depth and change of rut
depth. Itcan be seen that the zero line (ARUT=0) across through the high density area (red
area) which means the initial rut depth was slightly decreased by the maintenance actions.
In another word, the change of rut depth seems insensitive to the maintenance actions.
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9- 9 Distribution of initial IRI and change of IRI (State routes)
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Figure 9- 10 Quantile density contours (rut depth in right side for state routes)

Figure 9-7 illustrated the distribution of initial rut depth and change of rut depth between
two adjacent collecting years for interstates. Figure 9-7 (a) indicated that the maintenance
actions occurred with the rut depth around 0.11 to 0.15 in. which was similar to state
routes. Meanwhile,Figure 9-7 (b) indicated that there was a slightly decrease of rut depth
due to the maintenance action. Comparing with state routes, the change of rut depth for
interstates seems less sensitive.
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(a) Distribution of initial rut depth (b) Distribution of change of rut depth
Figure 9- 11 Distribution of initial rut depth and change of rut depth (Interstates)

Figure 9-8 illustrated the quantile density contours for initial rut depth and change of rut
depth for interstates. Generally, the density contours for interstates was similar to that for

state routes. 01
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Figure 9- 12 Quantile density contours (rut depth in right side for interstates)
9.2.3 Influence of different maintenance actions on pavement distress data

Figure 9-9 illustrates the distribution of initial PDI and change of PDI. The 75% quantiles
for initial PDI was 5, which means there were about 25% of the sections free from
distresses at thetime of maintenance actions. The distribution of change of PDI indicated
that the maintenance may result in an increase of PDI by 0.8 in average. It was also found
that there were 25% maintained section whose performance become worse. The reasons
could be: 1) there is little influence of maintenance actions on pavement deterioration;
and/or 2) there might be errors in interpreting the image.

Figure 9-10 illustrated the relationship between initial PDI and APDI. The linear
relationship wasfound between initial PDI and APDI. The results of fitting model were
listed in Table 9-6.
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Figure 9- 14 Change of PDI by the influence of maintenance actions



Table 9- 4 Fitting results of linear model

Summary of Fit Res
ults
R-Square 0.9
76
R-Square Adj 0.9
76
Root Mean Square Error 0.1
34
Mean of Response 1.1
57
Observations 481

Parameters Estimates

Interce Estimate 4.8
pt 82
Standard 0.0
Error 27
Lower 4.8
95% 29
Upper 4.9
95% 36
Slope Estimate -
0.9
83
Standard 0.0
Error 069
8
Lower -
95% 0.9
96
Upper -
95% 0.9
69

9.3 Establishment of performance curve
9.3.1 Determination of the initial year for performance model

To establish a performance model to predict the performance change over time, the
historical data will be employed. Before it can be used to construct performance model, the
initial yearafter the latest maintenance action should be identified.



In HPMA, most maintenance and rehabilitation actions with biding documents were
recorded insystem. However, routine maintenance actions were not included since they
were performed by the TDOT maintenance staffs and without biding document. The
routine maintenance contains pothole repairs, crack sealing, and patching. These actions
may have significant influence on the change of pavement performance at the minimum
road unit (Note the minimum road unit is one-tenth of a mile, by which the pavement
condition data are recorded). It was also found that a fewmaintenance and rehabilitation
actions were excluded in the system out of some reasons. Therefore, a threshold should be

setup to identify the latest maintenance action.

The indicators which can be used to identify the maintenance action include roughness
index: IR, rutting depth; individual distress; and the Pavement performance index
(Pavement Serviceability Index, Pavement Distress Index and Pavement Quality Index).
The analyses fromthe previous quarterly reports indicated that the influence of maintenance

action on different indicators were different, depending on the types of routes.

Table 9-5 listed the statistic characteristics of indicators in the presence of maintenance
actions. It was found that the PDI is most sensitive indicator to the maintenance action,
followed by IRI and PSI. The rut depth seems the most insensitive indicator. As the most
collected data (annuallyfor interstates, and biannually for state routes), in this report, IRI

was employed to identify the maintenance action.

Table 9- 5 Statistic characteristics of indicators in the presence of maintenance actions

Means Standard Median
Indicators (Interstates, Deviation (Interstates,
State (Interstates, State
routes) State routes)
routes)
AIRI LT -7.205,- 21.985,24.542 -3.754,-
21.127 22.461
AIRI RT -7.334,- 24.627,28.529 -5.15,-24.412
24.837
ARut LT -0.002,- 0.076,0.078 -0.0071, -
0.025 0.0202
ARut RT -0.009,- 0.057,0.080 -0.013,-0.017
0.024
APSI 0.133,0.37 0.353,0.381 0.07,0.412
5
APDI 0.85 1.06 0.84

Figure 9-11 illustrated the change of IRI over time from county 3 (SR 191 County 3 from
21.6mile to 21.7mile, P direction). There is a jump of IRI in 2009 from 168 in./mi. in




average to 57 in./mi.. This change probably caused by the maintenance action. Therefore,
the IRI before 2009 will be excluded when the performance curve is constructed. If the
performance curve is determined by including the data before 2009, the general trend of
performance curve will be considered as abnormal.
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Figure 9- 15 Change of IRI over time

Figure 9-12 illustrated two performance curves with and without data before 2009. It can
be seenthat with data before 2009, the general trend of performance curve seems abnormal.
The slope ofthe linear equation is positive, which means PSI increases with time. However,
if the data before2009 were excluded, the general trend of performance curve illustrated a
normal change of PSI with R? (greater than 0.9) higher than the form linear equation (less
than 0.6).
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Figure 9- 16 Performance curve (with and without data before 2009)

Figure 9-13 illustrated a typical change of IRI over time with IRI slightly drop in 2009.
Since nomaintenance records was found within this segment from 2008 to 2010. It cannot



conclude that the maintenance action is responsible for drop in IRI. The reason could be
either maintenance action or measurement error.

Figure 9-14 illustrated the performance curves with and without data before 2009. It can be
seenthat the general trend of two performance curves are similar. The slope of one with
three years isslightly higher than that with five years, which means the deterioration rate of
former is slightly higher than the later. Therefore, the predicated PSI value determined by
the former equation willhigher than the later. This means the performance curve with five
years’ data leads to a conservative result.
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Figure 9- 17 Change of IRI over time (slightly drop in IRI in 2009)
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Figure 9- 18 Performance curve (slightly drop in IRI in 2009)



Figure 9-15 illustrated the change of IRI over time. It can be seen from Figure 6 that there
seemsto be an abnormal change of IRI in 2010 on the left side. Figure 9-16 illustrated the
performancecurves. Results from linear equation indicated that the general trend of
performance curves seemnormal. Although the R-square of performance curve with less
data is higher than that with moredata, the performance curve determined by five years’
data seems more appropriate since more data were included.
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Figure 9- 19 Change of IRI over time (with abnormal change of IRI on one side)
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Figure 9- 20 Performance curve (with abnormal change of IRI on one side)



9.3.2 Determination of the performance curve

Linear equation is employed to describe the performance curve. There are many other
models can be used to describe the change of pavement performance over time. In this
report, the linearmodel was employed due to the following reasons:

1) The form of linear model is relative simple. The equations of determining the
parameters of linear model by Least-square method are simple and can be
programedeasily.

2) The slope of linear model can be used to indicate the general trend of
performancechange. Therefore, the abnormal changes in performance can be
easily identified.

3) The linear model is capable of predicating the short-term change of performance
curve. There is no significant difference in short-term prediction of performance
between linear model and other models.

Pavement Serviceability Index, PSI, was used to construct the performance model. PSI is
calculated from IRI, which is calculated from the longitudinal profile. As exponential
function isemployed, the variability of PSI significantly decreases. As an index to describe
the riding comfort, PSI is used for M&R analysis by decision tree.

9.3.3 Framework of determining performance curve

The performance curve is determined in accordance with the following steps.

1) Determining the road unit and route ID for each unit.

The road unit is the minimum analysis section based on which the performance curve was
established. The road unit is determined based on the analysis demand. With larger road
unit, thereliability will decrease. However, it is hard to make maintenance plan if the road
unit is too small. In HPMA, the road unit is one-tenth of a mile, which is the minimum unit
for analysis.

Obviously, the lower road unit may lead to better prediction results comparing with the
larger ones. In this report, the road unit to be analyzed is one-tenth of a mile. Lager road
unit can alsobe used depending on the analysis demand.

To identify each road unit, the following ID codes were employed: HR_ ROUTCOD;
HR COUNTY; HR _CNTYSQ; HR_ ROUTTYP; HR_ ROUTNUM; HR ROUTAUX;
HR DIRECTN; HR_ BEGMILE.



2) Time series of collected performance data.

The performance matrixes were established in terms of the following pavement condition
indices: IR, rut depth, and PSI by collecting year.

Table 9- 6 Matrix of PSI

ID Y Y . Y . Y

code ea ea ea ea
rl 12 1 m

131140M0

131140M0.1

131140M0.2

131140M0.3

In Table 9-6, the ID code for each road unit represents the minimum road segment within
the route. The ID code is named as follows. The ID number is the unique code for
identifying theroad unit.

HR_ROUTCOD
HR_COUNTY
HR_CNTYSQ
HR_ROUTTYP

HR_ROUTNUM

HR_ROUTAUX
HR_DIRECTN
HR_BEGMILE

131140
MO.1

3) Identify the maintenance action and modify the PSI matrix.

The maintenance actions are identified by change of IRI between two adjacent years. The
changes of IRI over year from each side and the average changes of IRI over year are
determinedas the follows

AHR_IRI RT=(HR_IRI RT)- (HR IRI RT)i,
AHR_IRI LT=(HR_IRI LT)- (HR IRI LT),
AHR_IRI= (AHR IRI RT+AHR IRI LT)/?2

The matrix of AIRI is constructed as shown in Table 9-7. The latest AHR IRI.1; with
values lessthan -15 in./mi. is first identified. The initial year which is used to construct
performance model is the later year of AHR_IRI;. ;. If no value of AHR_IRI is found to be
less than -15 in./mi., all data will be included to construct performance model.



Table 9- 7 Matrix of AIRI

ID

AHR 1
RIi»

AHR
IRIz3

AHR_IR
In- 1-n

AW~

4) Determining the parameters for the performance model utilizing least-square

method.

After pavement condition data and the initial year being screened out, the least-squared

methodis employed to estimate the parameters of performance model.

The formation of performance model is written as Eq. 9-1.

PSI=A*Year+B

(Eq. 9-1)

Where, A, B is the coefficient of performance model, indicating the slope (A) and intercept
(B). Independent variable (Year) starts with the initial year in the order of Year=1, 2,...,n.
PSI startswith the initial PSI value from the initial year.

In the program, the coefficient of A and B is determined as the following equations:

AZZ_}’_BEX

n n
_nIXY-TXTY
T nEXx?-(Xx)?

Where: X represents for Year; Y represents for PSI; n represents for the number of samples

usedin constructing the model.

R square is used to indicate the Goodness-of-fitting. It can be calculated by the following

equation.

RZ

_AZY—I—BZXY—HE?E

Y Y2 —ny?

Where: X, Y,n are the same as above.;



The flowchart of determining the performance curve was illustrated as below and Java
based code was also developed. The program is developed on the platform of Java. It
consists of .exe file (gawk.exe) and AWK file (PSI.awk). The program runs under cmd.exe.
The command forthe program is:

Gawk —F, —f PSL.awk filename.csv

The file containing original data should first transfer to the .CSV file format as illustrated
inFigure 9-17. The output interface of results is illustrated in Figure 9-19.
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7 |131140M0 1 3 11 40 ™M 2009 0 0.1 24.7 23.2 0.09 0.09 4.44 -1 20092010 13
8 |131140M0 1 3 11 a0 M 2010 0 0.1 2.4 25.9 0.08 0.07 4.37 -1 20102011 6.6
9 |131140M0 1 3 11 40 ™M 2011 0 0.1 30 27.2 0.09 0.08 4.27 -1 20112012 2.9
10 [131140M0 1 3 11 a0 M 2012 0 0.1 32.3 36.6 0.06 0.05 4.13 -1 20122013 5.2
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23 131140M0. 1 3 11 40 ™M 2005 0.2 0.3 30.9 46.8 0.02 0.08 4.04 -1 20052006 -0.2
24 |131140M0. 1 3 11 a0 M 2006 0.2 0.3 311 404 0.03 0.1 411 -1 20062007 23
25 131140M0. 1 3 11 40 ™M 2007 0.2 0.3 334 353 0.13 0.12 4.14 -1 20072008 85
26 | 131140M0. 1 3 11 a0 M 2008 0.2 0.3 2.3 2.5 0 0 4.35 -1 20082009 16

27 131140M0. 1 3 11 40 ™M 2009 0.2 0.3 i 233 25 0.13 0.1 4.43 -1 20092010 -5 =
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Figure 9- 21 Original pavement condition dataThe input interface of cmd command is
illustrated in Figure 9-18.
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_csu.csua

Figure 9- 22 Interface of input command (cmd.exe)
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Figure 9- 23 Output interface
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10. Equipment verification on control site

10.1 Test verification site

The test equipment should be validated before data production and needs to be periodically
checked during the data collection. Control sites are used to perform equipment
verification. In Tennessee, there are 16 control sites for the purpose of equipment
validation. Details were listedin Table 10-1. Most of the control sites are 1 mile length. The
sections are free of intersections and are relative flat. The traffic is low at these sites.
Therefore, the test vehicle can easily keep the cursing speed. The influence of change of
speed on repeatability of collected data can be decreased.

10.2 Comparison of historical data

Historical data in different test sites over Tennessee were collected to make comparisons of
IRI from different testing equipment. The test sites were listed in Table 2. The length of
test sites was 1 mile except for site 1-5 with 0.5 mile-length. Each site was divided into 10
sub-segments with 0.1 mile length. Site 1-5 was divided into 5 sub-segments. The IRI for
each sub-segment was calculated. The mean value, standard deviation, and coefficient of
variance for each site were calculated and listed in Table 3. The IRI data provided by the
contractor were collected from the HPMA. Since the data form TDOT and contractor were
collected at different time, there might be some errors on the results due to the change of
weather or pavement surface characteristics. Comparisons were made herein to estimate the
possible bias of two datasets. It isassumed that there is no significant change of IRI over
time within a year.

Table 10- 1 Test sites for evaluating the data repeatability

Site No. County nggfe Direction | Begin End Length ”l;;s];git)e (;Foeri:ra?ci:)er)
1-1 Jefferson 34 M 8.155 | 7.155 1 9/18/2014 | 11/6/2014
1-2 Sullivan 34 P 0.29 1.29 1 09/16/2014 | 10/7/2014
1-4 Roane 58 P 14.95 15.95 1 09/18/2014 | 11/15/2014
1-5 Knox 1 P 35.09 | 35.59 0.5 9/17/2014 | 11/18/2014
2-1 Hamilton 29 P 13.69 14.69 1 7/11/2014 | 10/26/2014
2-2 Rhea 29 M 25.55 | 24.55 1 07/11/2014 | 11/10/2014
2-4 Putnam 111 M 6.69 5.69 1 08/20/2014 | 11/3/2014
3-3 Rutherford 10 P 3.67 4.67 1 08/27/2014 | 10/18/2014
3-4 Montgomery 76 P 1 2 1 10/16/2014 | 10/19/2014
4-1 Madison 20 M 4 3 1 4/24/2014 | 9/24/2014
4-2 Henderson 20 P 18.6 19.6 1 12/9/2014 | 9/25/2014
4-3 Obion 3 M 29 28 1 11/10/2014 | 9/20/2014




According to Table 10-2, the mean value of IRI ranged from 25.8 to 97.0 with the highest
standard deviation of 5.3, which means all the test sites were in good or fair condition. Note

thatIRI of 90 equals to the PSI of 3.0. In another word, these test sites are suitable to

perform tests for equipment verification.

Table 10- 2 Statistic results of IRI

IRI- left IRI-right
Site No.  |Mean Standard Coefficient Coefficient
. Meanvalue, Standard

value, deviation,i of i ) o ) of

o } ) in/mi deviation,in/mi )

in/mi n/mi variance,% variance,%
1-1 49.0 0.7 1.43 49.4 1.3 2.63
1-2 65.2 0.4 0.61 73.6 1.8 2.45
1-4 40.8 04 0.98 51.6 1.7 3.29
1-5 73.2 3.6 4.92 73.6 3.2 4.35
2-1 38.0 0.7 1.84 394 0.9 2.28
2-2 71.2 04 0.56 76.2 0.4 0.52
2-4 25.8 04 1.55 32.0 0.0 0.00
3-2 48.7 2.5 5.13 47.6 53 11.13
3-3 51.8 1.6 3.09 52.2 0.4 0.77
3-4 52.0 0.0 0.00 50.4 0.5 0.99
4-1 41.8 0.8 1.91 53.2 0.8 1.50
4-2 95.4 0.5 0.52 97.0 0.7 0.72
4-3 39.0 1.2 3.08 40.8 0.4 0.98
4-4 44.2 0.8 1.81 53.4 0.5 0.94

Figure 10-1 illustrated the comparison of two datasets (IRI) obtained from two different
testingequipment (TDOT and contractor) in 2014. The closer the points were to the equity

line, the better agreement would be on the two datasets. Although the data were not

collected at the samedate, the scatters were close to the equity line. This means the results
from two different testing equipment are inconsistent with each other.
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Figure 10- 1 Relationship of IRI between collection devices (segment)

Figure 10-2 illustrated the comparisons of IRI value at each one-tenth of a mile. Generally,
the scatters were close to the equity line. It can also be seen that with higher IRI value, the
scatters tend to be away from the equity line. The results in Figure 8 indicated that the
contractor seemedto overestimate IRI value comparing with TDOT at higher IRI value. It
should be noted that the test date for the contractor was generally later than TDOT. The
deterioration of surface may alsocontribute to this result. Although the IRI of TDOT and
contractor were not collected at same date, fair good consistency was observed by
comparing the two datasets.
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Matched pairs test was performed to evaluate whether the two datasets were from the same
population. Figure 9 illustrated the test results. It can be seen that the upper and lower 95%



ranges from 0.09 to 5.51. This means contractor overestimated the IRI data comparing with
theTDOT. Meanwhile, the two datasets were not from the same population statistically.
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Figure 10- 3 Results of matched pairs test

10.3 Field verification test

The two validation tests were conducted. One was at control site 3-3 in Rutherford County
on March 27, 2015, the other was at control site 1-1 in Knox County on September 301,
2015. The weather was sunny. Figure 10-1 illustrated the test equipment that TDOT and
the contractor used.

10.3.1 Control site 3-3

In control site 3-3, each test vehicles ran the test section 10 times. The longitudinal profile
of pavement surface was collected by laser profiler. The contractor ran the first 0.1 mile to
evaluatethe repeatability of IRI. The rest of section was used to check the accuracy of DMI.



Table 10-2 and Table 10-3 listed the result of T-test with the assumption that the samples
have equal variance and unequal variance. T-test is performed by assuming that the two
samples havethe same means value. With p=0.05, the Ho hypothesis is rejected which
means the mean value of two samples were different.

(a) TDOT test equipment (b) Contractor Equipment

Figure 10- 4 Test Equipment
Table 10- 3 T-Test: Two-Sample Assuming Equal Variances

Contractor TDOT Contractor TDOT
left Left Right Right

Mean 69.38 72.74 55.97 58.92
Variance 1.08 79.01 7.62 14.39
Observations 10.00 10.00 10.00 10.00
Pooled Variance 40.04 11.00
Hypothesized Mean Difference 0.00 0.00
df 18.00 18.00
t Stat -1.19 -1.99
P(T<=t) one-tail 0.13 0.03
t Critical one-tail 1.73 1.73
P(T<=t) two-tail 0.25 0.06

t Critical two-tail 2.10 2.10




Table 10- 4 T-Test: Two-Sample Assuming Unequal Variances

Contractor TDOT Contractor TDOT
left Left Right Right
Mean 69.38 72.74 55.969 58.922
Variance 1.08 79.01 7.622 14.387
Observations 10.00 10.00 10.000 10.000
Hypothesized Mean Difference 0.00 0.000
Df 9.00 16.000
t Stat -1.19 -1.991
P(T<=t) one-tail 0.13 0.032
t Critical one-tail 1.83 1.746
P(T==t) two-tail 0.27 0.064
t Critical two-tail 2.26 2.120

The results from Table 10-2 and Table 10-3indicated there seems no significant difference
of IRIbetween two test devices, statistically. It should be noted that p-value in right wheel
path (0.06) was slightly higher than the threshold (0.05). This means the difference of IRI

in right path between two devices may be potentially significant.

Figure 10-5 and Figure 10-6 illustrate the longitudinal profile collected by two devices. It
wasfound that there is no exact the same elevation curve between two runs for the same
collectiondevice. However, the general change of elevation curve appeared similar. As for
different collection device, the change of elevation curve appeared different.

(2)-Right wheel path (b)-Left wheel path

Figure 10-5 Longitudinal Profile-TDOT’s equipment



(a)-Right wheel path (b)-Left wheel path
Figure 10- 6 Longitudinal Profile-Contractor’s equipment

Figure 10-7 and Figure 10-8 indicated that after processed by High-pass Butterworth filter
and offsetting a certain distance, the adjusted elevation curves matched well with each
other. Table 10-7 compared the difference of IRI with and without Butterworth high pass
filter. There was almost no change in IRI if Butterworth high pass filter was applied with
long cutoff wavelengthgreater than 120 foot.
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Table 10- 5 Influence of filter technique on IRI calculation

. IRI from qriginal IRI from processed
Position elevation elevation
inch/mile inch/mile
TDOT left 74.39 74.07
Contractor left 69.58 68.98
TDOT Right 59.44 59.27
Contractor Right 55.65 55.38

Figure 10-6 compared elevation PSD of two representative elevation data. It was found that
although the elevation data were quite different from two collection devices, the elevation
PSD curves were close. Previous studies indicated there is fairly good relationship between
IRI valueand PSD. Therefore, the closeness of PSD curves supported the conclusion that

there was no significant difference between two collection devices.
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Figure 10- 9 Comparison of Elevation PSD from two profile data
10.3.2 Control site 1-1

Control site 1-1 is located on Rutledge Pike, Knox County. The total length of the section is
0.5mile. The two reflective tapes are embedded permanently in the pavement structure
indicating the start point and end point of the test site. The validation test was performed by
each test vehicles running 10 times.



Figure 10- 10 Map of Control site 1-1
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(a)-Right wheel path (b)-Left wheel path

Figure 10- 11 Longitudinal Profile-TDOT’s equipment



(a)-Right wheel path

(b)-Left wheel path

Figure 10- 12 Longitudinal Profile-contractor’s equipment

T-test was also employed to estimate whether there is a statistic difference between two
datasets.Table 10-4 and Table 10-5 listed the result of T-test with the assumption that the
samples have equal variance and unequal variance.

Table 10- 6 T-Test: Two-Sample Assuming Equal Variances

Left Left Right Right
Contractor DOT Contractor TDOT
Mean 77.01 58.93 76.95 64.75
Variance 97.28 2.71 73.17 22.17
Observations 10.00 10.00 10.00 10.00
Pooled Variance 49.99 47.67
Hypothesized Mean Difference 0.00 0.00
df 18.00 18.00
t Stat -5.72 -3.95
P(T<=t) one-tail 0.00 0.00
t Critical one-tail 1.73 1.73
P(T<=t) two-tail 0.00 0.00
t Critical two-tail 2.10 2.10

Table 10- 7 T-Test: Two-Sample Assuming Unequal Variances



Left Left Right Right
Contractor IDOT Contractor TDOT
Mean 77.01 58.93 76.95 64.75
Variance 97.28 2.71 73.17 22.17
Observations 10.00 10.00 10.00 10.00
Hypothesized Mean Difference 0.00 0.00
Df 10.00 14.00
t Stat -5.72 -3.95
P(T<=t) one-tail 0.00 0.00
t Critical one-tail 1.81 1.76
P(T<=t) two-tail 0.00 0.00
t Critical two-tail 223 2.14

As listed in Table 10-3 and Table 10-4, with p value less than 0.05, the Ho hypothesis is

rejectedwhich indicates the mean value of two samples were significantly different.

The relative error can be expressed as Equation 10-1.

Error =

. |IRI-—IRIzz]

IRIag

(Eq. 10-1)

Where, IRI. is the mean value of IRI from contractor’s equipment; IRIag is the mean value
of IRI from agency’s equipment. Table 10-4 lists the comparison of two collection systems.
Table 10-4 indicates there is a significant difference between the two collection devices.
For each one-tenth of a mile, evident difference in IRI was found. The lowest relative error

was 5.70%, whereas the highest relative error was greater than 50%.

Table 10- 8 Comparison of two collection systems

Section ID Site 1-1
Left Right
Milestone TDOT Contractor | Error | TDOT Contractor | Error
in./mi. in./mi. % in./mi. in./mi. %
0-0.1 63.61 85.52 34.44 58.00 69.36 19.58
0.1- 56.05 83.47 48.92 66.72 82.00 2291
0.2
0.2- 64.95 77.81 19.80 74.37 79.55 6.97
0.3
0.3- 61.09 64.57 5.70 68.38 84.98 24.28
0.4
0.4- 48.55 73.72 51.84 56.01 69.21 23.58
0.5
Total 58.93 77.01 30.68 64.75 76.95 18.84




Figure 10-13 illustrated the comparison of elevation PSD from two collection devices. Note
thatthe raw elevation was filtered by low pass Butterworth filter to excluded wavelength
length thatless than 3 foot and greater than 120 foot. It was found that there was significant
difference of PSD curves at wavelength from 3 foot to 10 foot in both sides. Therefore, the
source of errors inIRI could be due to the measurement errors within this range.
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Figure 10- 13 Comparison of PSD from two collection devices

Figure 10-14 illustrates the influence of short cutoff wavelength on the difference of IRI between
two collection devices. The IRI values were calculated by excluding the wave features that were
less than cutoff wavelength. Butterworth filter was employed to filter out the short waves. As the
cutoff short wavelength increased, the difference of IRI between two collection devices decreased.
This indicated the errors of IRI between two collection devices decreased. With short waves less
than 10 foot excluded, the IRI values were fair close. The results from Figure 10-14 were in
agreement with the findings from Figure10-14.



80
70
60

E 50

e 40

Z 30
20
10

TDOT left 100
¢ € L O 4 TDOT Right
- ® Contractor Left 80 — ' m W Contractor Right
®e 8 - o
O g_ 60 ¢ o N
ol B TR ‘el
3 E 40 ' '
20
T T ! 0 T T 1
0 10 20 30 0 10 20 30
Cutoff short wavelength, (ft) Cutoff short wavelength, (ft)
(a) Left (b) Right

Figure 10- 14 Comparison of influence of cutoff short wavelength on IRI

10.4 Influence of error factors on time series

There are two basic change of IRI over time: 1) The IRI along both paths increased with
time orthe IRI along one wheel paths increased with time while the IRI on the other path
remain stable; 2) Change of IRI over time generally remains stable. The above two
scenarios are considered asnormal tendency of IRI over time when prediction analyses are
conducted. There are some abnormal IRI trends that were identified as below in accordance
with LTPP data.

e The IRI of both wheel paths, or one of the wheel path, for a given date was

considerablyhigher or lower than the IRI obtained before and after the date.
e The variations of IRI for both wheel paths at different dates were high.

The factors that caused the above abnormal IRI trends can be summarized as below.
10.4.1 Variation in wheel track

Figure 10-15 illustrated that the value of IRI in right wheel path at pavement age of 20
years wasconsiderably higher than other profile dates, whereas the change of IRI in left
wheel path remained stable. The elevations for the first three visit at section 19-1044 were
illustrated in Figure 10-16. Butterworth filter was applied to filter the long wavelength
greater than 125.0 foot.Field distress survey indicated that transverse cracks were observed.
The location of transverse cracks were identified as spikes on elevation curves. One may
find that there were some difference in elevation data near the spikes in terms of
wavelength and amplitude. This means there were some errors when the transverse cracks
were being collected.

Figure 10-17 illustrated the elevation PSD on right wheel path for the first three profile
dates. Results indicated that main difference of PSD in frequency domain between the



second profile date and other profile dates were at wavelength less below 10 foot. The
variation in wheel trackmay be responsible for the abnormal change of IRI over time. One
of the reasons pointed by LTPP report was that the driver appeared to have followed a
wheel path closer to the shoulder during that year. And in this wheel track, the cracks of
transverse cracks tended to be wider.
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Figure 10- 15 Inconsistent IRI in one wheel path at section 19-1044
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Figure 10- 17 Elevation PSD curve (Section 191044)

Figure 10-18 illustrated the change of IRI over time for section 1-0101. It seems that the
IRI obtained from the 10" and the 11" visit deviated from the trend of IRI over time. By
the IRI from the two profile dates being excluded, the R-square of regression curve
increased from 0.32to 0.78. Note that this section was used as control section in LTPP and
there is no maintenance records found in the section for the entire monitoring period.
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Figure 10- 18 Change of IRI on right wheel path over time (Section 01-0101)

Figure 10-19 illustrated the elevations at four visits (the 9™ to 12™ visit) by applying
Butterworthfilter to filter the long wavelength greater than 125.0 foot. It was found that the
general trend of pavement profiles from each profile dates were similar. There were also
some spikes in the elevation data for the 10" and 11™ visit, which might be the indication
of crack or other surface features. The elevation PSD curve illustrated in Figure 10-20
indicated that there were some difference in wavelength ranging from the minimum value
to 60 foot between each visit. This means the abnormal change of IRI over time may be
caused by the elevation profile with wavelength range less than 60 foot. One of the possible
reason is that the operators profiled the elevation at different wheel tracks for each visit.
The spikes in the elevation also indicated that the surface distresses may also be
responsible for this abnormal change. As indicated by the distress data, there were wheel-

1000



path cracks on the profile section.
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Figure 10- 19 Elevations for the right wheel path on the 9" to the 12 visits (Section 1-0101)
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Figure 10- 20 PSD for right wheel path on the 9 to the 12" visits (Section 1-0101)

10.4.2 Equipment-related problem

Figure 10-21 illustrated the typical abnormal change of IRI over time. The IRI were
collected from LTPP section GPS-261010. It was found that IRI on both wheel paths for
the second profiledate were significant higher comparing with the other dates. Figure 10-16
illustrated the elevation PSD for three visits. In the figure, the abnormal change of IRI was
found at 26101003. Evident difference was found between the second visit (26101003) and
other two visits. The main difference in wavelength ranged from 2.6 ft./cycle to 10.2
ft./cycle. Figure 10-19 illustratedthe elevation after applying Butterworth filter with



wavelength greater than 125.0 foot excluded. By reviewing the elevation data in Figure 10-
22, one can find that the changes of elevation for three profile dates were almost identical
at long wavelength ranges. However, at short wavelength ranges, the amplitudes of
elevation for the second visit were different from other visits. This error was attributed to
the improperly working condition of the accelerometer of thedevice according to LTPP

report.
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Figure 10- 21 Inconsistent IRI trends in both wheel paths at section 26-1010
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Figure 10- 22 Elevation for left wheel path for the first three profile dates (Section
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Figure 10-23 illustrated the elevation PSD for the three profile dates. The main difference
ofPSD was at wavelength range below 10 foot. PSD curves for three profile dates were
almostoverlapped at the wavelength ranges from 20 foot and above. Since the errors in
profile datawere attributed to accelerometer, the PSD curve may indicate that the errors in
PSD at shortwavelengths below 10 foot may be associated with the improper working
condition of accelerometer.
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Figure 10- 23 Comparison of elevation PSD (Section 261010)

10.4.3 Pavement resurfacing

The surface profile will be significantly changed after the maintenance activities are
applied. Theinvestigated LTPP section was resurfaced between the two profile dates.
Figure 10-24 illustrated the comparison of elevation before and after the maintenance
activities were applied. The surfaceprofile appeared to be smooth after maintenance
activities. Figure 10-25 illustrated the comparison of PSD. Comparing with PSD curves
above (Figure 10-17, Figure 10-20 and Figure 10-23), one may find that the PSD curves
were quite different at all wavelength ranges. This means pavement resurfacing will
completely change the pavement characteristics rather than partially change surface
characteristics at some wavelengths or wavenumbers.

(a) Left wheel path (b) Right wheel path

Figure 10- 24 Comparison of pavement profile after maintenance action being applied
(Section37-2819)
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11. Summary and Conclusion

This study investigated the quality of pavement condition data in current PMS in
Tennessee. A nationwide survey was conducted to collect the current practices on
quality management on pavement condition data. The general data quality over year in
Highway Pavement ManagementAdministration (HPMA) system in Tennessee was

evaluated. Factors influencing data quality areidentified by reviewing and analyzing
PMS data. As International Roughness Index (IRI) is the most important indicator to
PMS, field validation tests between different collection devices wereconducted to
evaluate the potential variability of IRI. Based on the result and findings above, a
guideline to implement data quality management was established. Based on the
analyses, following conclusions are drawn:

1.

A nationwide online survey was conducted to collect the current practices on
data quality management of state DOTs. The results from questionnaire
indicated field validation/calibration of testing equipment is considered as the
most selected stepsbefore data collection. Individual distresses are recognized as
the most common way in evaluating the confidence of data collection. The
engineer ranked the following factors in order of the amount impact on quality
of pavement condition data: device calibration; personnel training; sensor
accuracy; accuracy of internal measurement; system that is used to process the
raw data; weather and testing conditions; and speed of testing vehicles.

The quality of pavement condition data are classified into basic quality and
analytical quality. By evaluating the current PMS data, the measurers and
criteriaof data quality were determined. The overall quality of pavement
condition data over years were evaluated based on these measurers and criteria.
Data variability and its influence on maintenance planning were investigated.
Theanalyses indicated that:

1) The roughness data, including International Roughness Index and Rut
depth, collected from two wheel path were not statistically identical. For
IRI value, there is a linear relationship between two wheel paths with
highR-square, whereas rut depths from two wheel paths were not
linearly correlated.

2) For distress data, the accuracy of distress extent at low severity level had
little influence on the calculation of PDI while the accuracy distress
extentat moderate and high severity levels significantly influenced the
accuracy of PDI. The accuracy of distresses severity at moderate level
influenced the accuracy of PDI significantly.

4. The analyses of influence of data variability on maintenance planning indicated

that the variability of IRI and distress severity level was the dominant influence



factors for maintenance planning. The variability of distress extent had slight



influence on maintenance planning. There is no significant influence of
variabilityof rut depth on the maintenance planning.

The analysis of data variability also indicated that the influence of data
variabilityon maintenance planning may vary in terms of current pavement
conditions, howthe pavement condition indices are defined, and how the
maintenance and rehabilitation analyses are performed. In response to this issue,
a dynamic framework towards data quality analysis at network level was
established.

By investigating pre- and post-maintenance pavement condition data, the
changesof pavement condition data due to maintenance activities are identified.
The linearmodel was used to construct the performance curve and determine the
analytical quality of pavement condition data. A Java based program was also
developed to construct the performance curve.

Field validation tests were performed to evaluate the difference of IRI from
agency’s devices and contractor’s device. Statistical analyses indicated there is a
possibility that the IRI obtained from different devices could be significant
different. Further analyses were also performed to identify the revolution pattern
of IRI over time. It is recommended that lateral comparisons between tests
devices be performed to improve the reliability of collected data.

The results and findings were summarized to establish a practical procedure for
quality management of PMS data which aims to assist TDOT to improve the
quality control and quality assurance in data collection.
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