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EXECUTIVE SUMMARY 
 

Tennessee Department of Transportation (TDOT) established Pavement Management 
System (PMS) since 1980’s. TDOT started to systematically collect roughness data 
since 1993 and distress data since 1998 and started using videotaping from 2002. 
Similar to many other agencies in the United States, TDOT utilized PMS to perform 
maintenance demand analysis based on which the budget allocation is determined. 
Furthermore, cost- effectiveness analysis of maintenance activities or preventative 
maintenance, prediction analysis of long-term pavement performance, and calibration 
of pavement design equations are conducted based on the content and accuracy of PMS 
data. The purpose of this research is to identify the current quality issues of PMS data 
and to establish the data quality management guideline by which a standard data 
production procedure can be followed. Main research activities were summarized as 
follows, 

1. The research team conducted a nationwide online survey to investigate the 
current practices on PMS data quality management. By reviewing the survey, the 
research team identified the general quality issues on PMS data. 

2. The research team systematically investigated the current PMS data, including 
roughness data and distress data and established a framework of data quality 
management. 

3. Variability analyses were performed to quantitatively evaluate the influence of 
data variability on pavement maintenance planning at network level. The data 
considered in these analyses included International Roughness Index, Rutting 
depth, distress extent and severity level. 

4. The influence of maintenance activities on abnormal change of pavement 
condition data was investigated. The changes of pavement condition data due to 
the influence of maintenance activities are then identified. A Java based code 
was developed to construct the performance curve and determined analytical 
quality of pavement condition data. 

5. The difference of roughness data collected from different collection devices 
were compared and evaluated. Field verification tests were also performed to 
evaluate the accuracy and reliability of roughness data collected by agency’s 
devices and data provider’s device through statistical analyses. 

6. A practical procedure for quality management of PMS data was developed to 
improve the quality control and quality assurance in data collection in the future. 



The following conclusions are summarized. 
 

1. The results from questionnaire indicated field validation/calibration of testing 
equipment is considered as the most selected steps before data collection. 
Individual distresses are recognized as the most common way in evaluating the 
confidence of data collection. The completeness of collected data is considered 
as the content of basic quality evaluation. The engineer ranked the following 
factors in order of the amount impact on quality of pavement condition data: 
device calibration; personnel training; sensor accuracy; accuracy of internal 
measurement; system that is used to process the raw data; weather and testing 
conditions; and speed of testing vehicles. 

2. The survey also indicated that although some state DOTs have already 
implemented or have been developing data quality control procedure, there is no 
consensus on how to perform data quality control and assurance. The indicators 
and criteria used by different state DOTs on evaluation of data quality are 
different. 

3. The data quality was classified into basic and analytical quality. By extensively 
investigating current practices from other state agencies and reviewing current 
PMS data, the measurers and criteria for different quality level are determined. 

4. Data variability estimated the accuracy and preciseness of a value to a reference 
value. It is considered as the most significant factor that influences the overall 
data quality. The research team systematically evaluated the data variability and 
its consequence on maintenance planning. The analyses indicated that: 

1) The roughness data collected from two wheel path were not statistically 
identical. IRI value from two wheel paths correlated well with each 
other with high R-square, whereas rut depths from two wheel paths were 
not linearly correlated. IRI for state routes exhibited larger variation than 
that for Interstates. 

2) For the three levels of distress severity, the accuracy of distress extent at 
low severity level had little influence on the calculation of PDI while the 
accuracy distress extent at moderate and high severity levels 
significantly influenced the accuracy of PDI. Transition matrices 
analyses showed that the accuracy of distresses severity at moderate level 
influenced the accuracy of PDI significantly. 

3) The influence of data quality on maintenance planning varies in terms of 
current pavement conditions, how the pavement condition indices are 
defined, and how the maintenance and rehabilitation analyses are 
performed. For the current PMS used in Tennessee, the variability of IRI 
and distress severity level was the dominant influence factors for 
maintenance planning. The variability of distress extent had slight 



influence on maintenance planning. There is no significant influence of 
variability of rut depth on the maintenance planning. 

5. Results indicated that there is a significant decrease of IRI and increased of PDI 
after the maintenance activities. Meanwhile, there is a slight decrease of rut 
depth after maintenance activities. This is because the rut depth for interstates 
and state routes were generally low at the time of maintenance. Maintenance 
activities were generally applied to correct distress such as cracking. Therefore, 
the influence of maintenance on improvement of rut depth seems limited. 

6. Field validation tests were conducted to compare the difference of IRI collected 
between agency’s devices and contractor’s device. Results indicated there might 
be significant difference between different test devices in terms of IRI 
collecting. Periodically lateral comparisons are necessary to validate the test 
results from different devices. 
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1. Introduction 
 

1.1 Problem statement 
 

The Pavement Management System (PMS) of the Tennessee Department of 
Transportation (TDOT) has provided an immense amount of data on pavement surface 
conditions at the network level. Since instituted in 1980s, the system covers the 1,104 
miles interstate and 14,359 state routes (1). The pavement condition data for interstates 
were collected every year, whereas those for state routes were measured once every two 
years. TDOT has systematically collected pavement roughness data since 1993 and 
pavement distresses data since 1998 and started using videotaping from 2002. 

 
Because of the enormous information and convenience for access, more and more users 
have started to use the PMS data for pavement maintenance strategy analysis. From 
2007 to 2011, TDOT conducted a pavement preventive maintenance research project to 
investigate the cost-effectiveness of different pavement maintenance treatments and to 
develop a guideline on pavement maintenance strategy analysis. The measured 
pavement performance data were exported from PMS to build treatment performance 
models and a certain amount of abnormal pavement performance data was identified. 
The researchers collected 553 HMA resurfacing maintenance records applied in the 
Region 2 of Tennessee from 1999 to 2005 to build the post-treatment performance 
curves. However, only 380 (69%) of the 553 road sections show a clear trend that 
Present Serviceability Index (PSI) values decrease with the increase of overlay age. 
Figure 1 shows the PSI on the two interstate sections on both plus and minus direction. 
It can be seen that the PSI after 2000 decrease with the increase of pavement age while 
the PSI before 2000 led an abnormal trend. Although TDOT has calibrated the 
treatment performance models for PMS and developed a practical pavement strategy 
analysis guide, the existence of those incorrect data will cause misleading pavement 
maintenance decisions, especially at project levels. Thus, it is of great importance to 
assure the accuracy of the PMS data so that more confidence and credentials can be 
established with the PMS data.  



 

(a) I-75 Campbell County (18.5-24.5) (b) I-40 Madison County (1.1-7.5) 
 

Figure 1- 1 Samples of abnormal PSI trends 

 
Another issue with the current TDOT PMS is the lack of pavement distress data. In the 
preventive maintenance project (2007 to 2011), the researchers investigated 2742 road 
sections identified in Tennessee. However, only 215 of them (7%) have Pavement 
Distress Index (PDI) curves and 176 (82%) of the 215 road sections show that PDI 
decrease with the increase of overlay age. The lack of pavement distress data is mainly 
due to the pavement videotaping methods. TDOT collects pavement distress data by 
manually reading the videotapes of pavement. From 2002 to 2009, TDOT used the 
forward facing images (photo log) which make the pavement surface distress difficult 
to identify due to the splashing of sunlight in the image. Although TDOT has the images 
of all their highways, it does not have distress data for all the highways. In order to 
collect distress data, TDOT has already switched to downward images since 2010. 
Pavement distress condition is an important indicator for triggering pavement 
maintenance and selecting specific maintenance treatments, especially at project levels. 
Thus, it is meaningful to investigate the quality of TDOT’s new pavement distress data 
collection system. 

 
Utilizing PMS data for pavement preservation analysis at both network and project 
levels is of great importance. At the network level, department policies and guidelines 
developed based on PMS data have vital and extensive impacts on TDOT’s operation, 
functions, and performance. At project level, pavement maintenance engineers rely on 
more specific data such as friction and structural capacity to determine specific 
maintenance methods and budget requirements for individual pavement segments. 
Clearly, a guideline is needed to assess and improve the quality of TDOT current PMS 
data, which will help PMS managers improve their quality control and quality 
assurance in data collection and management. Furthermore, a guideline of utilizing PMS 
data for maintenance strategy analysis including the limitation of current PMS data in 
those applications will be presented with examples. This will be very helpful to help 
pavement maintenance engineers make maintenance strategy at both network and 



project levels. 
 
 

1.2 Objective 
 

The main objective of this project is to develop guidelines on quality management of 
pavement data collection and the application of PMS data in pavement strategy analysis 
on both network and project levels. This objective will be accomplished by a 
comprehensive assessment of the data provided by the current PMS. 
 
To investigate the current status of TDOT PMS data and to determine the feature of 
abnormal datasets. 

7. To evaluate the accuracy and reliability of the PMS data through field survey 
and statistical analyses. 

8. To develop a practical procedure for quality management of PMS data to 
improve the quality control and quality assurance in data collection in the future. 



 

2. Pavement condition data 
 

The pavement condition data are used to evaluate the condition of pavement. The data 
are crucial to the decision support system which is used to make maintenance decisions 
of transportation infrastructure. The pavement condition data can also be used to 
evaluate the cost-effectiveness of different maintenance strategies. The current 
pavement design system also utilizes pavement condition data to calibrate the 
performance models. 
Therefore, the precise and accuracy of the pavement condition data is crucial to not 
only to the pavement management activities but also to other related works as well. 

 
The pavement condition data consists of four aspects: riding comfort, surface 
deterioration, riding safety, and structural capacity. These data are utilized to support 
decision making process in terms of different levels. At network level, riding comfort 
and surface deterioration are usually used for evaluating the current pavement condition 
and making maintenance decisions. 

 
2.1 International roughness index (IRI) 

 
The International Roughness Index (IRI) is used to evaluate the pavement performance 
associated with riding comfort. It is a combination reaction of the subjective feeling of 
individual passengers, vehicles vibrations (1), and surface profile of pavement. The 
subjective feeling of passengers differs from individuals. The vibrations of each vehicle 
are different depending on the design and installation of damping system and cruising 
speed. The profile of pavement surface is the root of vehicle vibrations and determines 
the surface roughness. 

 
The pavement profile related to the ride quality can be characterized by pavement 
roughness index, one of the pavement condition indicators. The roughness index 
describes the mathematical property of a two-dimensional road profile obtained from 
measured longitudinal direction of the roadway. It can be calculated using a quarter-car 
vehicle math model, whose response is accumulated to yield a roughness index with 
units of slope (in/mi, m/km, etc.)(2). Introduced in 1986 (3), the International 
Roughness Index (IRI) has become the most commonly used worldwide in the process 
of construction and management of roadway facilities. 

 
The National Cooperative Highway Research Program (NCHRP) initiated a research 
project in 1980’s to help state agencies improve their use of roughness measuring 
equipment (4). Consequently, The World Bank conducted a project aiming to compare 
or convert data obtained from different countries and built a bridge between the IRI and 

http://en.wikipedia.org/wiki/International_Roughness_Index#cite_note-1
http://en.wikipedia.org/wiki/International_Roughness_Index#cite_note-nchrp228-5
http://en.wikipedia.org/wiki/The_World_Bank


other roughness indices from different countries (5). The methods for measurement of 



IRI can be rod and level surveying equipments, dipsticks (6), and laser profilometer 
systems which is a common nationwide used method in pavement condition data 
collection(7). 

 
The international roughness index (IRI) has been proven to be a very useful tool to 
evaluate rideability. In pavement management system, IRI is employed to establish 
indices that reflect pavement serviceability. (26) The IRI is also a transferable reference 
scale that can be used as a suitable calibration standard for all response-type and 
profilometric instruments. (27) 

 
The IRI was defined as the cumulative relative displacement of the axle with respect to 
the frame of this reference quarter-car per unit distance travelled over the pavement 
profile at a speed of 80km/h. It is expressed in m/km or in/mi at selected interval, (e.g., 
every 100m or 0.1mi.) (28) The traditional way of measuring IRI is to use response-
type pavement roughness measuring devices (29) which were equipped with a 
mechanical integrator of the relative displacement of the axle with respect to the frame 
of the trailer. A significant drawbacks of these device is that the results are influenced 
by vehicle mechanic system and measuring speed. And in those days, the mechanical 
systems were not advanced enough to provide the correct damping shocks or to 
calibrate the unit correctly. (30)(31) The application of signal processing theory into the 
measure road profiles give the birth to the high-speed road profiling which is firstly 
developed by Spangler and Kelly in the 1960s. (32) Nowadays, with the application of 
non-contact technique in obtaining road profile, the measurement of IRI has been 
changed. IRI is now calculated from a measured longitudinal road profile by 
accumulating the output from a quarter-car model and dividing by the profile length to 
yield a summary roughness index with units of slope. (2) (33) 

 
The IRI is influenced by changes of longitudinal elevation in wheel paths which is 
associated with the characteristics of pavement surface. The pavement roughness 
profile can be divided into a large variety of wavelength ranging from several 
centimeters to tens of meters, with varying amplitudes. These wavelengths affect the 
excitation of the various vehicles traveling the road in different ways, depending on 
their traveling speed and dynamic characteristics such as suspension configuration, 
wheel and frame inertial properties, and so on. (28) 

 
In the calculation of IRI, not all the wavelength needs to be involved since some of the 
wavelength has little effects on the ride quality of traversing vehicles, such as 
wavelengths shorter than the dimensions of pavement macrotexture and longer than 
roadway geometric features perceived as longitudinal slope or curvature. (28) The 
moving average smoothing filter is usually used to obtain a profile of IRI. (34) This 



filter consists of a low-pass filter to remove short wavelengths from the profile and a 
high-pass filter to remove long wavelengths from the profile. The base length used for 
the IRI averaging must be considered. Specifying the base length becomes particularly 
important when specifications for road quality are formulated, or when profiling 
accuracy is prescribed. That the variation in IRI found over the length of a road is more 
extreme when the base length is short should be taken into account when reporting 
instrument accuracy or writing roughness specifications. Specifically, the accuracy of 
high-speed profiling systems should be specified according to base length. (28) To date, 
there are no established standards for pavement profile filtering; rather, the selection of 
filters depends on the application at hand. (28) 

 
Some factors influenced the precision of IRI are summarized as follows. (35) 

• The procedures used in making the longitudinal profile measurement. 
• The interval between adjacent profile elevation measures. The precision of IRI 

can be improved by applying shorter interval. 
• IRI precision is roughly equivalent to the precision of the slope obtained from 

the longitudinal profile measurements, fro distance ranging from the 
approximately 1.5m (5ft) to about 25m (80ft). 

• Errors in locating the wheel track longitudinally and laterally can influence the 
IRI values significantly. 

 
NCHRP Project 10-47 recommended guidelines for measuring a longitudinal pavement 
profile to use in computing that pavement's International Roughness Index (IRI) and/or 
Ride Number (RN). The investigators investigated the factors that affect roughness 
measurements, quantified the effect of these factors on repeatability and accuracy, and 
determined how and when these factors can be controlled. (36) 

 
The report summarized the factors that affect profiler accuracy and repeatability. 

 
• The utilization of improper filter may result in errors in IRI of 2 to 10 percent 

and errors in RN of 10 to 50 percent on typical roads. 
• A sample interval of 167 mm or less is required for accurate measurement of 

IRI. A sample interval of 50 mm or less is required for accurate measurement of 
RN. 

• Pavements exhibit significant transverse, seasonal, and daily variations in 
roughness. Thus, a single roughness measurement, no matter how accurate, 
must be considered only as a statistical sampling of the roughness. 

• Typical variations in lateral positioning may cause repeat measurements of IRI 
to vary up to 20 percent on a section 300 m long. 

• Profilers should, at a minimum, measure roughness in two wheel tracks. Height 



sensor footprint has a strong influence on the way a profiler measures cracks 
and open joints. Proper use of anti-aliasing filters improves the accuracy of profilers on 
pavements with these features, as well as the agreement between measurements 
obtained with different types of height sensors. 

• Moderate acceleration and deceleration of less than 0.15 g can be tolerated in 
network-level measurements of profile, but should be avoided in project-level 
measurements. 

• Ultrasonic sensors should be replaced due to the unreliable measurements of IRI 
or RN. 

 
Theoretically, an actual pavement profile can be simulated by an infinite number of 
sinusoidal of various wavelengths and amplitudes. The pavement profile can be 
translated into its constituent sinusoidal to form profile spectral content. By using the 
Fourier analysis, the relationship of elevations of longitudinal profile and distance can 
be transformed to the form of powers spectral density (PSD) in which amplitude is the 
function of wave number. (28) 

 
The PSD is primarily used to evaluate vehicle response, suspension optimization and 
control, dynamic pavement loading and energy consumption. (37) As a direct statistic 
of roughness, PSD roughness is different from the IRI in that the former has been 
routinely adopted by vehicle manufactures for automobile design purpose for many 
years. 
However, the IRI is the most commonly used statistic for evaluating roughness in 
highway transportation agencies. It is believed that if a relationship can be found 
between the IRI and the PSD roughness, it will be much easier and produce more 
benefits for both highway and vehicle industries to compare their criteria and further to 
improve their production designs. (38) 

 
To correlate IRI with PSD, Sun simulated the IRI using PSD of pavement surface 
fluctuation. Quarter-car models recommended by the World Bank for measuring 
pavement roughness are adopted to simulate vehicle response. Surface roughness in 
time domain is generated based on 36 known PSDs of roughness. Results showed that 
the IRI is linearly correlated with the standard deviation of relative vertical velocity 
between the axle and sprung mass. It was found that if PSD roughness is expressed as a 
polynomial function, the IRI can be simply calculated by means of the square root of 
the sum of the weighted regression coefficients of PSD roughness. (39) 

 
Correlation of IRI and PSD becomes possible based on their PSD-based expression 
which made transportation agencies possible to use PSD-based models to precisely 
convert IRI to PSI given that PSD roughness of a pavement is known. (39) Sun et al. 
also proved that the average of the absolute response of the quarter-car model was 



directly proportional to the standard deviation of that response quantity which 
correlated the indirect statistics with PSD roughness. They also found that a linear 
correlation exists between the IRI and the standard deviation of roughness.(40) 

 
Some new pavement roughness indices were presented based on the PSD concept such 
as RIDE, which is based on the sprung mass acceleration response of a reference vehicle 
to the pavement profile. It is calculated in the frequency domain by multiplying the 
power spectral density (PSD) of the pavement profile by the square of the transfer 
function of the sprung mass acceleration of the reference vehicle. The resulting sprung 
mass acceleration PSD is integrated over frequency to yield the root-mean-square of the 
sprung mass acceleration per unit length of pavement traveled. The sprung mass 
acceleration is shown to be the main contributor of dynamic axle loads in heavy trucks, 
which relate to vehicle and cargo damage and also to pavement damage. (41) 

 
Wei et al attempted to integrate pavement surface roughness into a roughness index. By 
using different wavelet transformation and analysis technique, the useful information 
for pavement maintenance management will be extracted. The characteristics of a 
pavement roughness profile are identified in both the frequency and distance domains. 
It was demonstrated that using appropriately selected analysis methods and wavelet 
parameters, detailed roughness features of interest to pavement engineers not currently 
available from summary roughness statistics can be obtained together with summary 
roughness statistics as part of the roughness survey report for highway agencies. (42) 
Wei et al. also pointed out that the use of wavelet transform to overcome can correlate 
various convenient numerical indices with one another. In his study, comparisons were 
made with four common roughness indices, namely, the international roughness index 
(IRI), root mean- square vertical acceleration (RMSVA), mean absolute vertical 
acceleration (MAVA), and slope variance (SV). They found that IRI, RMSVA, MAVA, 
and SV had pair wise coefficients of multiple determination (R2) ranging from 0.18 to 
0.75. But wavelet energy statistics had an R2 of at least 0.857 with each of the roughness 
indices. (43) 

2.2 Surface distress 
 

The pavement condition data of surface deterioration are especial important to those 
who are in charge of making decisions on maintenance strategies. The determination of 
maintenance tools for a specific project mainly depends on the types of distress that the 
surfaces are suffering. Owing to the large quantity of required data, collection methods 
typically involve windshield surveys and automated methods (8). 

 
Since the surface deteriorations are highly definition- depended, the determination of 
distress can be either subjective (9).In order to standardize the types of distress and 



quantify the distress in the same way so that deteriorations at different road sections are 
comparable, pavement distress library are developed which is used to identify the 
distresses (10). Overall distress indices are developed to quantify the severe degree of 
surface deterioration. 

 
Long-Term Pavement Performance (LTPP) proposed a manual to identify the distress 
of pavement. Three types of pavement are involved: asphalt concrete surfaces, Joint 
Portland Cement Concrete surfaces, and continuously reinforced concrete surface. The 
distresses of each type are classified as shown in Table 2-1 to Table 2-3. (10) 

 
Table 2- 1 Distress of pavement for asphalt concrete surfaces 

 

Category Type 

Cracking Fatigue cracking 

Block cracking 

Edge cracking 

Longitudinal cracking 

Reflection cracking at joints 

Transverse cracking 

Patching and 
Potholes 

Patching deterioration 

Potholes 

Surface 
Deformation 

Rutting 

Shoving 

Surface Defects Bleeding 

Polished aggregate 

Raveling 

Miscellaneous 
Distress 

Lane-to-shoulder dropoff 

Water Bleeding and Pumping 

 

Table 2- 2 Distress of pavement for joint Portland Cement Concrete surfaces 



Category Type 

Cracking Corner breaks 

Durability cracking(“D” 
Cracking) 
Longitudinal cracking 

Transverse cracking 

Joint Deficiencies Joints seal damage 

Spalling of longitudinal joints 

Spalling of transverse joints 

Surface Defects Map cracking 

Scaling 

Polished aggregate 

Popouts 

Miscellaneous 
distress 

Blowups 

Faulting of transverse joints and 
cracks 
Land-to-shoulder dropoff 

Land-to-shoulder separation 

Patch/patch deterioration 

Water bleeding and pumping 

 
 

Table 2- 3 Distress of pavement for continuously reinforced concrete surfaces 
 

Category Type 

Cracking Durability cracking(“D” Cracking) 

Longitudinal cracking 

Transverse cracking 



Surface Defects Map cracking 

Scaling 

Polished aggregate 

Popouts 

Miscellaneous 
distress 

Blowups 

Transverse construction joint 
deterioration 
Land-to-shoulder dropoff 

Land-to-shoulder separation 

Patch/patch deterioration 

Punchouts 

Spalling of longitudinal joints 

Water bleeding and pumping 

Longitudinal joint seal damage 

 
 

The distress indices listed above are employed by many transportation agencies to 
assess the pavement condition. A national wide survey on the distresses collected by 
various transportation agencies indicated that rutting was the universally collected 
distress followed by transverse cracking and fatigue cracking which indicate pavement 
deformation and fatigue failure (8). Other commonly collected asphalt pavement 
distresses data include longitudinal cracking, bleeding and flushing. 

 
Tennessee DOT collects seven types of distress for asphalt pavement. Table 2-4 listed 
the type of each distress and their extents and percentage conversion. 

 
Table 2- 4 Types of distress collected in Tennessee for asphalt pavement 

 

 
Distress 

 
Extents (Each 

severity) 

Percentage 
conversion 

 
(Each severity) 

Fatigue cracking Affected areas The percentage of 
affected 



  area 

Longitudinal wheel 
path cracking 

 
Cracking length 

The percentage of 
length of cracking to 
length of wheel path 

Patching and 
Pothole 

Affected areas The percentage of 
affected 
area 

Block cracking Affected areas The percentage of 
affected 
area 

Transverse 
cracking 

Number of transverse 
cracks 

Number of 
transverse 
cracks 

Longitudinal Non-
wheel path 
cracking 

 
Cracking length 

The percentage of 
length of cracking to 
length of non- wheel 

path 

Lane Joints Joint length The percentage of 
length to the 
total section 

 

Since, the pavement management system uses these indices for evaluating the 
transportation facilities, it is important to make a good knowledge of pavement distress 
data before dealing with the pavement condition data. 

 
The digital image‐processing concepts was presented and applied to collect the 
pavement condition data more safety, consistence and cost-effectively. Digital imaging 
technology which plays a significant role in the process of pavement data collection 
consists of distress‐data acquisition and interpretation. (44) 

 
The digital imaging technology is integrated with other advanced technique such as an 
illumination assembly to illuminate the region from which the pavement deterioration is 
recorded; and a processor in the computer to process and interpret the image to form an 
automation inspection system. (45) The utilization of automation inspection system is 
beneficial to the collection of pavement condition data at high-speed condition, but to 
the monitoring and inspection of bridge management system as well. (46) 

 
Some studies have already proved the effectiveness of using automatic distress 
detecting method in collecting the pavement condition data. Raman et al. (47) compared 



the severity and extent of the transverse crack by statistical analysis. The researchers 
used analysis of variance for normally distributed data and nonparametric test 
(Kruskar–Wallis) in the remaining cases. Statistical comparison of sample and full-
section image data showed that a 5% sampling rate was enough to evaluate transverse 
cracks with the precision desired for network-level pavement management in Kansas. 

 
Wang et al. (48) compared the use of an automated cracking survey system with 
manual evaluations. The evaluators reviewed and analyzed 5% of the images for each 
comparison section. Differences were found between the manual and automated 
process; however, it was suggested that these discrepancies may be caused by the low 
repeatability of the manual surveys. 

 
The Ontario Ministry of Transportation compared automated and semi-automated 
pavement distress collection techniques from three service providers with in-house 
manual surveys (49). The study investigated various pavements including surface-
treated, hot-mix asphalt, composite, and PCC pavement. The distress manifestation 
index was used for the comparisons. The study found that automated results are 
comparable with manual surveys. 

 
The image capturing subsystems included conventional analog-based area-scan, analog 
and digital line-scan, laser scanning, and shadow Moire method. Newer 
implementations of image processing include artificial neural net and parallel 
processing. (50) Nowadays, the automation inspection system based on image 
technology is well developed to identify most of the typical distress on roadway surface 
such as cracking (51)(52) (53) and pothole. (54) 

 
However, there are still some unsolved problems in the automation inspection system. 
Some environmental factors may have influence on the image capturing of pavement 
deterioration, as a result the interpretation of digital pictures will be a difficult job. An 
investigation conducted by Florida Department of Transportation (FDOT) indicated 
that the HID lighting system introduces a significant level of noise into the images in 
both asphalt and concrete pavements, leading to an inability to accurately distinguish 
pavement cracks from their background. (55) To date, a large variety of algorithm is 
developed and under developing to facilitate the automation inspection system to 
identify the pavement distress more precise and efficiency. 

 
Cheng et al proposed a novel pavement cracking detection algorithm based on fuzzy 
logic. The main idea of the proposed method is based on the fact that the crack pixels in 
pavement images are “darker than their surroundings and continuous.” First, the 
proposed method determines how much darker the pixels are than the surroundings by 



deciding the brightness membership function for gray levels in the difference image. 
Second, they mapped the fuzzified image into the crack domain by finding the crack 
membership values of the pixels. Third, they checked the connectivity of the darker 
pixels to eliminate the pixels lacking in connectivity. (54) 

 
Mohamed et al. compared traditional and neural classifiers for pavement crack 
detection. Results showed the neural network classifier performed slightly better than 
the traditional classifier on the test data set. However, the parameters needed to be 
carefully selected and extensive empirical training performed to achieve good results in 
neural classifiers.(55) 

 
Koch et al presented a method for automated pothole detection in asphalt pavement 
images based on MATLAB prototype. Based on the geometric properties of a defect 
region the potential pothole shape is approximated utilizing morphological thinning and 
elliptic regression. Subsequently, the texture inside a potential defect shape is extracted 
and compared with the texture of the surrounding non-defect pavement in order to 
determine if the region of interest represents an actual pothole. (57) 

 
The image-processing methods often mistakenly treat oil spillages, shadows, and road 
markings as distresses because their features are similar to those of distresses. 
Therefore, Su et al proposed a dual-light inspection (DLI) method to reduce false 
alarms. A field test was conducted to verify the DLI method. A total of 212 pairs of 
images were captured during nighttime, including images of alligator cracks (42 pairs), 
manholes (42 pairs), longitudinal cracks (58 pairs), spillages (34 pairs), and road 
markings (52 pairs). Twenty percent of the images (i.e.,45 pairs) were used as training 
sets to train the classification model. The remaining images were then used to test the 
accuracy of the classification model. The accuracy of the DLI method, which uses dual-
light image pairs, was compared with that of the traditional method, which uses 
individual images. The DLI can significantly improve the accuracy in determining 
spillage (traditional: 18%, DLI: 82%) and road markings (traditional: 8%, DLI: 96%). 
The DLI is also reasonably accurate in determining other distresses including alligator 
cracks (traditional: 95%, DLI: 90%), manholes (traditional: 97%, DLI: 100%), and 
longitudinal cracks (traditional: 62%, DLI: 69%).(56) 

3. Summary of the DOT survey 
 

3.1 Overview of survey 
 

A questionnaire was created through the Website of office of information technology in 
the University of Tennessee, in January 2014. It was normally distributed in March 
2014, through the link below: 

http://ascelibrary.org/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Kaseko%2C%2BM%2BS)


https://utk.co1.qualtrics.com/SE/?SID=SV_9sheS6lSoMh3TOR 
 

In the first round, we sent the invitation to state DOT’s Maintenance agency of 41 
states and received twenty-four (24) responses, as shown in Table 3. Among all the 
respondents, Pennsylvania Department of Transportation is currently conducting a 
project through which a pavement asset management system (PAMS) will be 
developed. Therefore, they left several questions blank that pertained to how the PAMS 
works. 

Table 3- 1 List of invited States DOT and response to the Survey 
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3.2 Responses of DOTs 
 

The main information gained in this round is summarized below. 
 

Question 1:What types of management systems are used in your agency? 
 

All the respond states own pavement management system. Three of them have their 
own asset management system. DTIMS system is the most popular software that used to 

http://www.wvdot.com/
http://www.wvdot.com/
http://www.dot.state.wi.us/
http://www.dot.state.wi.us/
http://dot.state.wy.us/
http://dot.state.wy.us/


support pavement management activities, followed by Agile Assets. Some states also 
use Highway Pavement Management Application (HPMA) developed by Stantec. It is 
also found that a few states developed their own system in supporting pavement 
management activities such as Washington State which has Washington State Pavement 
Management System (WSPMS). 

Table 3- 2 Summary of the software that used in supporting PMS 
 

Name Number of State Agency used 

Agile Assets 6 

dTIMS 7 

HPMA 2 

Others 2 

Total responses 17 

 
 

Question 2: How does your agency conduct quality assurance for the collected 
data? 

 
Eight response agencies (44%) have the standalone system to conduct quality assurance 
for collected data; two (11%) are developing the standalone system; two (11%) are 
conducting quality assurance through a third-party; and the rest six (33%) are not 
specified. This means the state agencies begin to emphasize data quality assurance for 
PMS, as a result, more than half of the response states conduct the quality assurance 
through a specific system. 

 

 
Figure 3- 1Results from Question 2  



 
 

Question 3: On what cycle is the pavement data collected? 
 

Figure 3-2 to Figure 3-4 illustrated the results of the answers. For interstate, all the 
response states collect the roughness data (smooth) at least biannually. 89% of the 
states collect roughness data annually and 78% of them collect distress data annually. 
For state route, 44% states collect roughness data annually, 33% biannually, and the rest 
states are either in more than once every two years or in irregular cycles. As for the 
distress data of state route, 33% states collect roughness data biannually while 33% 
annually. 7 out of 18 states collect roughness and/or distress data for non-state routes 
while 5 of them collect these data either once every two years or less. From this 
questions, we can find that the states highway administration make their efforts mainly 
on monitoring interstates at high frequency. As for state routes, there seems a tendency 
that the monitor frequencies for roughness data are higher than distresses. 

 

 
Figure 3- 2 Collecting frequency of interstate 

 
 

 

Figure 3- 3 Collecting frequency of state route (Smooth) 



 

 
 

Figure 3- 4 Collecting frequency of state route (Distress) 
 

Question 4: How many centerline miles of roadway does your agency collect each 
cycle? 

This question illustrated the scales of centerline miles managed by each highway 
administration. It can be seen that most of the state highway agencies monitor 
centerline miles of interstates less than 3000 miles. Meanwhile, the centerline miles of 
state route vary different ranging from less than 500 miles to greater than 6000 miles. 

 
 

 
 

Figure 3- 5 Centerline miles of interstates managed by highway administration 



 

 
 

Figure 3- 6 Centerline miles of state routes managed by highway administration 
 

Question 5: What type of pavement condition data does your agency collect? 
 

It can be seen that all the response states collect pavement condition data of surface 
distress and smooth at network level while 56% of the response states collect frictional 
properties of pavement surface. Only 13% of the states collect structural capacity at 
network level. At project level, roughness data (smooth) are most popular, followed by 
structural capacity (64%), surface distress (55%), and frictional properties (50%). All 
the above information is used to determine the specific treatment strategies. 

 

Figure 3- 7 Types of pavement condition data collected by highway administration 
(Network level) 



 

 
Figure 3- 8 Types of pavement condition data collected by highway administration 

(Project level) 
 

Question 6: Does your agency employ an overall pavement condition index to 
describe the following distress? 

 
The overall pavement condition index is employed to describe surface distresses since 
the different distresses are summarized and calculated separately. Therefore, the total 
index associated with surface distress is needed to reflect the distress level of current 
pavement condition. The indices used to describe the distress including Surface 
Condition Index (SCI), Performance Index (PI), Surface Rating (SR), Pavement 
Condition Rating (PCR), Cracking Index (CI), Overall Pavement Condition (OPC), and 
etc. Although the ways of calculation of each index are quite different from each other, 
the principles of each index are similar. The finalized index is calculated by weighing 
and summarizing each distress type based on the expertise’s experience. The roughness 
data was usually quantified by international roughness index (IRI). Some states also 
employ a model to transfer IRI into other index such as Ride Quality Index (RQI), Ride 
Comfort Index (RCI), Ride Index (RI), etc. Since IRI may vary different. The selection 
of these indices may decrease the variability of roughness data in the finalized 
roughness index which may be able to reduce errors and improve data quality. 



 

 
Figure 3- 9 Use of overall index to describe the pavement condition 

Question 7: Is your pavement management system used for support in 
determining maintenance strategies? What kinds of pavement data do you use for 
determining strategies of pavement maintenance? 

17 states agencies response this question. 76% of the response states use PMS in 
determining maintenance strategies. The other 24% states may determine the 
maintenance plans or strategies based on information from specified projects and PMS 
don't play an important role in the final decision of maintenance plans. For those who 
employ PMS to make the maintenance plans or strategies. The overall pavement 
condition indices of surface distress and smoothness are mostly adopted to describe the 
pavement condition at network level. At project level, the individual distress especially 
surface distress data is used to determine the specified maintenance treatments. 
Normally, the decisions are made based on the experience of pavement management 
engineers. 
Based on the response of this question, the importance of pavement condition data in 
decision-making process of maintenance strategies can be ranked as surface distress the 
most important, followed by smoothness, frictional properties, and structural capacity. 

Table 3- 3 Use of pavement condition data to determining maintenance strategies 
 

Is your pavement management system used for support in determining 
maintenance strategies? 

Yes,76%; No, 24% 

What kinds of pavement data do you use for determining strategies of 
pavement maintenance? 



 
Items 

Total pavement condition 
index 

Individual distress 

Project 
level 

Network 
level 

Project 
level 

Network 
level 

Surfa
ce 
Distr
ess 

5 11 8 5 

Smo
othne
ss 

6 10 3 4 

Fricti
onal 
Prop
erties 

4 3 5 0 

Struc
tural 
Capa
city 

3 1 5 0 

 
 

Question 8: Do you keep the record of pavement maintenance activities? Do you 
integrate the maintenance history into the current pavement management system? 
Do you include cost information in your maintenance history? 

The maintenance histories are important when one conducts cost-benefit analysis or 
cost effectiveness analysis on pavement maintenance activities. From the respective of 
data quality control, it can be used to identify the abnormal changes in spatial-temporal 
series of pavement condition data by correlating maintenance history with pavement 
condition data when some improvements in pavement condition are caused by the 
maintenance interference. The answers obtained from these questions indicated that 
about three quarters of the response states keep the maintenance record and most of 
them are included in PMS. For those who keep the maintenance record, 67% of them 
contain cost information regarding to the maintenance history. The purpose of 
introducing cost information in PMS is mainly to conduct cost benefit analysis. 

Table 3- 4 Collection of maintenance information in PMS 
 

Do you keep the record of pavement maintenance activities? 

Yes 76%; No 18%; Not sure, 6% 



Do you integrate the maintenance history into the current pavement 
management system? 

Yes 92%; No 8%; Not sure, 0% 

Do you include cost information in your maintenance history? 
Yes 67%; No 33%; Not sure, 0% 

Questions 9: What distress data does your agency collect? Where? 
 

This question was used to obtain the general distress data that state agencies collect. For 
asphalt pavement, rutting and cracking are the most common collected distresses. Other 
surface deterioration such as pothole/patching, raveling, bleeding/flushing may also be 
included in some states. For concrete pavement, faulting and spalling are most common 
collected distresses. Shattered slab, cracking, and punch-outs are also collected by some 
states. A few states also evaluate joint damage; patching/potholes; and failures; etc. 
Most distresses are collected in single lane where the measuring vehicle ran. A few 
states collected distress in multiple lanes. The multiple-lane distress can reflect the 
pavement condition data completely and is useful at project level which specified 
maintenance treatments and plan are needed. As for network level, the distresses are 
collected in the lane or lanes where truck traffic is usually applied. 

Table 3- 5 Distresses data collected by state agencies 
 

Asphalt Pavement 

Distress Single 
Lane 

Multiple 
Lanes 

Rutting 14 4 

Fatigue cracking 13 4 

Longitudinal Cracking 14 2 

Transverse Cracking 14 3 

Map/Block Cracking 8 2 

Bleeding/Flushing 6 1 

List of others that some states indicated: raveling, patching/potholes, etc. 
 
International roughness index is not included here since it is classified as roughness 
data. 
Concrete Pavement 



Distress Single 
Lane 

Multiple 
Lanes 

Raveling 2 2 

Shattered Slab 7 1 

Faulting 11 4 

Durability Cracking 6 1 

Spalling 10 4 

Edge Cracking 6 1 

Pumping 1 1 

Punch-outs 5 2 

List of others that some states indicated: general cracking; traverse cracking; Joint 
Seal Damage; Longitudinal cracking; Patching/potholes; Joint Deterioration; Mid-
slab cracking; failures; etc. 
International roughness index is not included here since it is classified as roughness 
data. 



Question 10: How is the distress data collected? 
 

44% response state highway administration contract with data provider to distress 
collection. 39% states perform the data collection by themselves. There are also some 
states collected the distress data in both ways. It seems the number of states who prefer 
to contract with a data provider or vendor is close to those prefer in-house collection 
(44% versus 39%) Due to the limitation of question, no more information was obtained 
for the reason for those states adopting both in-house and contractor collection. The 
reasons might be associated with issues such as expenses, devices, etc. 

 
 
 

 

Figure 3- 10 Way of distress data being collected 
 
Question 11: How is the pavement distress being analyzed? 

 
The semi-automatic image process is the commonly used method to analyze pavement 
distresses. In semi-automatic distress identification method, the distresses are manually 
identified. Then an automatic process summarizing the individual distresses and 
calculating the distress index is employed to obtain the total distress index. Since the 
identification of distresses is subjective, the total distress index obtained by different 
person may be different. That is the main source of error. The automatic distress 
identification method seems to be more objective since no human errors is introduced 
through the entire process. However, the algorithms of distress identification method 
are still under development. The errors from algorithms in recognizing and classifying 
the distresses may be the main error of the total distress index.  



 

 

Figure 3- 11 Ways of distress being analyzed 
 

Question 12: Which of the following activities are utilized by your agency to check 
data? 

In this question, all the listed procedures were selected by state highway administrators. 
This means all these measurements are often adopted by these administrators in 
assuring the pavement condition data quality. Meanwhile, it can be found that some 
states listed other activities that they adopted during data collecting procedure. These 
activities can also be utilized in the procedure of data quality control and assurance for 
Tennessee DOT. 

 
Before data collection, it noted that the field calibration of testing equipment was 
selected by all the response states. The field calibration will be performed to assure the 
consistence of pavement condition data. This step will eliminate the error introduced by 
devices. It is recommended that the testing equipment be calibrated in a specified 
section which refers to as calibration section. This section is used to calibrate the 
measurement of roughness data such as longitudinal elevation for IRI and transverse 
elevation for rutting depth. The purpose of calibration section is to evaluate the accuracy 
and repeatability of testing equipment. By the calibration result, the state highway 
administrators can decide whether the testing equipment is suitable for the continuous 
collecting the pavement condition data. 

 
During the data collection, equipment and data monitoring should be required. This will 
directly affect the data quality. The monitoring of equipment includes whether the 
equipment is operating normally, whether the data is recorded normally or there is a 
missing data during collection. 

 
After data collection, data proving is the most important part since it will determine the 
validation of data and affect the follow-up activities in PMS. All the response states 



checked completeness of data after collection. The completeness of data indicated that 
how the testing sections cover the total specified sections. Other options after data 
collection can also be verification of collected data by statistical analysis; determination 
of confidence of collected data; detection of abnormal data by data mining technology. 
The data assurance procedures after data collection aim to determine the reliability of 
collected data. This is used to estimate how much confidence can be put on the 
pavement condition data. It is also based on this confidence that the payment be made 
which is similar to the pay factor in the QC/QA of pavement construction. 

 
Before data collection 

Activities Numbers of States used 

Equipment adjustment 17 

Staff training 15 

Testing of known segments for 
verification of 
equipment 

18 

Others: Statistical Tests; Annual certification; Field verification, internal data 
sampling on photolog viewer; shadow collections; comparison with previous years; 
Certify profiler at TTI 

During data collection 

Activities Numbers of States used 

Requirements for equipment 
operation 

17 

Data monitoring 18 

Others: Blind ratings of same sections by a rater; Audits by 3rd party 



After data collection 

Activities Numbers of States used 

Verification of collected data by 
statistical analysis 

6 

Verification of collected data by a 
third- party 

3 

Determination of confidence of 
collected data 

10 

Check for abnormal data 16 

Check for missing data 18 

Comparison with time-history 
data 

12 

 

Question 13: Which of the following parameters do you use for evaluating the 
acceptance or confidence of data collection? 

Individual distresses are recognized as the most common way to evaluating the 
confidence of data collection. Since the individual distresses are measured through 
images captured from the pavement surface, the severity and extents can be re-
evaluated by the highway administrations before they accepted these data. Those 
roughness data, however, is not the desirable parameters that can be used for evaluating 
the data confidence. These roughness data are highly dependent of the longitudinal and 
transverse profiles on which the pavement roughness indices and rutting depth were 
determined. 
Some states prefer to use synthesized index when determining the acceptance or 
confidence of data collection. These indices contain information that users will be 
interested in including roughness data; distress data, etc. However, there are still some 
drawbacks when these indices are used. Since the synthesized indices are calculated 
from each individual distress, the errors from the individual distresses may be 
eliminated when the calculations are perform. In another word, the bias of synthesized 
indices is determined not only by errors from the individual distress but by the ways of 
how those synthesized indices are calculated as well.  



 
 

Answers Number of States 
used 

Synthesized index 7 

Individual distress classifications (severity and 
extents) 

12 

Other methods listed are: digital images; verification by video; passing the 
audits 

 
 

Question 14: What percentage of collected data is typically considered invalid and 
required correction? 

It can be seen that about 61% of the response states thought their invalid data are less 
than 5%. Other 17% ranges from 5% to 10%. The rest 22% states were not sure the 
exact percentage of invalid data in their PMS. The invalid data are those data with 
obvious mistakes, such as incomplete data, missing data, abnormal data, etc. In the 
previous quarterly report, the research team evaluated the completeness of pavement 
condition data. The results indicated that the percentages of missing data and invalid 
data are usually less than 5%. This means that the data quality of PMS in Tennessee 
state may represent the most states in U.S. 

 
 

 
 

Figure 3- 12 Percentage of invalid data 
 

Question 15: Based on your experience, please rate the following factors in order 
of the amount impact each has on data quality. 

Based on the response of this question, the engineers rank the device calibration as the 
most importance factors that impact the data quality, followed by personnel training, 
sensor accuracy, accuracy of internal measurement, system that is used to process the 
raw data, weather and testing conditions, and speed of testing vehicles. The guideline of 
data quality control and assurance will reflect these points. 



 

 

Figure 3- 13 Scores of different influence factors on data quality 
 

3.3 Summary and Conclusions 
 

From the current response of this survey the team has found out that: 
• The state agencies are aware of the data quality issues during the data collecting. 

Many states agencies have already performed data quality control procedure either 
in- house or through third-party 

• The interstates were monitored at high frequency and the roughness data had a 
higher monitoring frequency than distress data for state routes. 

• Some states collected distress data in-house while others prefers to contract with 
data provider. There are also a few states adopt both methods to collect data. 
Furthermore, the common used way to interpret distress image is to use semi-
automatic image process. 

• To assure the data quality, the field calibration of testing equipment is the most 
selected steps before data collection. During the collection, monitoring of 
equipment is selected by all the states. After the data collection, all the response 
states checked completeness of data. 

• Individual distresses are recognized as the most common way to evaluating the 
confidence of data collection. 

• The engineers rank the device calibration as the most importance factors that impact 
the data quality, followed by personnel training, sensor accuracy, accuracy of 
internal measurement, system that is used to process the raw data, weather and 
testing conditions, and speed of testing vehicles. 

It was found that many states had already realized the importance of data quality 
control and some of them already adopted or are developing a standalone system to 
perform data quality control. However, there is no consensus on how to perform data 



quality control and assurance. The states have different ideas on evaluating the 
acceptance or confidence of pavement condition data. Since the participants of 
questionnaire are from pavement management division of each state DOTs, the 
information that provided will reflect the current state-of-practice in data quality control 
and assurance in PMS. 



4. Data quality management framework 

4.1 Quality management components 
 

The data quality management consists of quality assessment, quality design, and quality 
monitoring. 

 
Figure 4- 1 Phase involved in providing quality information 

(1) Quality design 
 

The data rules are designed to perform data assessment. The data rules specify the 
criteria of acceptance. Some principles of data rules need to be followed. 

 
Variability 

 
The criteria for variability consist of two parts: 1) The collected data are repeatable. 
This means the data collected from the same testing equipment are repeatable under the 
same testing condition, whereas the data collected from the different testing equipment 
are repeatable under the same testing condition; 2) The difference of collected data 
from both sides are low. The roughness data (IRI and rut depth) are collected from left 
and right wheel path, respectively. The difference of collected data should be within the 
allowable tolerance difference. 

 
Validity 

 
The criteria for validity are to specify the reasonable ranges of collected data. Any data 
out of the reasonable ranges is considered as the abnormal data. They should be re- 
checked by the data provider and re-processed or re-collected based on request. 



Consistency 
 

The requirement for consistency means the change of collected data from one wheel 
path should be consistent with that from another. The trend line which illustrates the 
change of indices over time should follow the normal direction. The abnormal change of 
trend line may be the indication of abnormal data or other interference such as 
maintenance actions. 

 
Logicality 

 
The change of different types of data should be consistent with each other. There are 
interrelationships between different types of indices. These should also be considered 
when the quality of data is designed, 

 
(2) Quality assessment 

 
In quality assessment process, the overall quality of data provided by the vendor should 
be estimated. The content of quality assessment includes: the data content, data 
formation and structure. The checklist of pavement condition data may include: 

1) Completeness; 
2) Correctness; 
3) Tolerance of the invalid data; 
4) Variability; and 
5) Consistency. 

 
 

(3) Quality Monitoring 
 

During the production, the data collecting process should be monitored from the 
beginning of equipment verification till the end of the data delivery. The collected data 
should be checked periodically to ensure that: 

1) The operation of testing equipment is normal; 
2) Data production is conducted in accordance with the expectation; 
3) Collected data are within the expected range of value; 

 
The results of quality monitoring should be reported as a part of quality management 
report. 

 
4.2 Quality classification of pavement condition data 

 
The purpose of data quality management is to ensure high-quality data which can be 
used to correctly perform maintenance and rehabilitation (M&R) analyses. Therefore, 
the data quality is classified in terms of different purposes. In this study, the data quality 
is classified into basic quality and analytical quality. 

 
The purpose of basic quality is to estimate whether the collected data are within the 



expected ranges. When the basic quality of data is estimated, those sections in which 
the collected data were obvious abnormal or out of the range will be double checked. 
The date within those sections may either be re-collected or re-processed. 

 
The purpose of analytical quality is to evaluate the suitability of data which can be used 
to perform M&R analyses. The analytical quality is conducted based on the result of 
basic quality. The indicators which are used to evaluate basis quality and analytical 
quality are listed in Table 4-1. 

 
Table 4- 1 Data used for quality classification 

 

Data used for basis 
quality 

Data used for analytical 
quality 

IRILT; IRIRT; 
 

; RUTLT; 

RUTRT; 

; 
 
PDI. 

 
Number of data record; 

Latest maintenance 

record; 

R square of the fitting 

model. Performance 

curve 

 
4.2.1 Basic quality 

 
Data used for estimating basis quality include: IRI from both side, rut depth from both 
sides, the difference of IRI and rut depth from both sides and pavement distress index 
(PDI). The definition of basic quality of data is listed in Table 4-2. The collected data 
of high-quality should be in accordance with the range specified in Table 4-3, Table 4-4 
and Table 4-5. 

 
IRI and rut depth are collected in both wheel paths. The pavement serviceability index 
(PSI) is calculated from IRI. The representative value of PSI and rut depth for a section 
is the average of value from both wheel paths. Therefore, the variability of PSI and rut 
depth can be represented by the difference of both paths. With the increase of 
difference of IRI and rut depth from both paths, the variability of PSI and rut depth 
increases. The 
representativeness of the average value of PSI and rut depth for a section is 
compromised. Sections with differences of IRI and rut depth out of range are classified 
as medium for quality level. 

 
The pavement condition data are classified as low quality if either the value of IRI, rut 
depth or the difference between both sides is out of range. 



 
Table 4- 2 Definition of basic quality 

 

Quality 
level 

Requirements 

High • Rut depth and IRI are within the range in 
Table 4-3. 

• Difference of IRI and rut depth between 
two wheel paths is within the limit in Table 
4-5. 

• Distress data are within the limit in Table 
4-4. 

All requirements above are met 
Medium • Rut depth and IRI are within the range in 

Table 4-3. 

• Differences of IRI and rut depth between 
two wheel paths are out of the limit in 
Table 4-5. 

• Distress data are within the limit in Table 
4-4. 

All requirements above are met 
Low • Rut depth and IRI are out of the range in 

Table 4- 3. 

• Differences of IRI and rut depth between 
two wheel paths are out of the limit in 
Table 4-5. 

Distress data are out of the limit in Table 4-4. 
 

Table 4- 3 Expected value of roughness data 
 

Item
s 

Expected 
Values 

Percent within 
limits 

IRI 20.0-400.0 
in/mi 

100 

Rut 
dept

h 

0-1.00 in 100 



Table 4- 4 Expected value of distress data 
 

Ite
ms 

Expected 
Values (Sum of 
each severity) 

Percent 
within 
limits 

Patt
ern 
crac
ks* 

0-100 100 

Pat
ch 

0-100 100 

 

Pattern cracks are the sum of each severity of fatigue cracks and block cracks.  

 

Table 4- 5 Expected value of difference between two wheel paths 

 
 

 

 

The purpose of basic quality analysis is to evaluate whether the collected data can 
represent the pavement condition. Data with high quality can accurately and precisely 
represent the current pavement condition. Due to the possible bias between two wheel 
paths, data with medium data quality overestimate one wheel path and underestimate 
the other. 

 
Table 4-5 lists the tolerance of difference of roughness data between two wheel paths. It 
indicates that the difference of value between two wheel paths is allowed. The criteria 
of difference were determined by analyzing the historical data value. The large 
difference of value between two wheel paths may be the result of surface distresses on 
one wheel-path and no distresses on the other. The average value may not accurately or 
precisely represent real pavement condition. Note that the difference of value (IRI and 
rut depth) between two paths is allowed. However, if the percentage of out-of-range 
sections increases, the representativeness of average value is compromised. Therefore, 
if the differences of value between two wheel paths are larger than the limit in Table 4-
5, the data quality is classified as medium.  

Items Criteria Percent within 
limits 

Difference of IRI between 
two sides, in./mi. 

interstates Less than 10.0  
95% 

Others Less than 30.0 

Difference of Rut between two sides, in. Less than 0.20 95% 
 



4.2.2 Analytical quality 
 

Data used for estimating analytical quality include: the number of data records for 
curving fitting; latest maintenance records; R square of the fitting model; trend of 
performance curve. The definition of analytical quality of data was listed in Table 4-6. 

 
The number of data record depends on the collection frequency of data. Normally, the 
roughness data were collected once a year on interstates and once every two years on 
state routes. The distress data were normally collected once every two years. Note that 
the more data used for fitting the curve, the higher reliability of the performance curve 
will be. The analytical quality of data is classified as “High-”, if the number of data was 
lower. 

 
The performance curve indicated the performance change over time. The normal 
change of performance curve shows the performance decreased over time. However, 
due to pavement maintenance actions, the trend of performance curve might be 
different. With the latest maintenance actions, the data before the latest maintenance 
action can be excluded in the M&R analysis by assuming that these data have little 
influence on the trend of performance curve after latest maintenance action. 

 
R square of the fitting model is an indicator to evaluate the goodness-of-fit. The higher 
R square is, the better the performance curve will be and the more reliable the M&R 
results will be. The data quality is determined by R square. 

 
Table 4- 6 Definition of analytical quality 

 

Quality 
level 

Requirements 

High • Collecting frequency: 

(Roughness data: 1 times/year for 
interstates; 2 times/year for state routes; 
Distress data: 2 times/year for all roads.) 

• R square of the fitting model is greater 
than 0.6. 

• Latest maintenance actions are recorded. 

• Trend of performance curve is normal 

• All requirements above are met 



High- • Collecting frequency: 

(Roughness data: 1-1.5 times/year for 
interstates; 2-2.5 times/year for state routes; 
Distress data: 2- 
2.5 times/year for all roads.) 

 
• R square of the fitting model is greater 

than 0.6. 

• No latest maintenance records 

• Trend of performance curve is normal 

• All requirements above are met 
Medium • R square of the fitting model is 0.2-0.6. 

• Trend of performance curve is normal 

• No latest maintenance records 

• All requirements above are met 

Low • R square of the fitting model is less than 
0.2. 

• Trend of performance curve is abnormal 
• One of the above requirement is met 

Incomplete • Collecting frequency: 

(The number of data is less than 30% of the 
number of years for all roads.) 

• No latest maintenance records 
• All requirements above are met 



5. Evaluation of current pavement condition data 
In this part, the completeness and validity of current PMS data were evaluated. Both 
completeness and validity are considered as the basic quality of pavement condition 
data. 

 
The completeness check was conducted to estimate the percentage of missing data. It 
provided a general estimation of the total amount of data that can be used for 
representing current pavement condition. The total segments occurred in the HPMA are 
listed in Table 5-1. The road segment was identified in accordance with the following 
items, including, HR_ROUTCOD, HR_COUNTY, HR_CNTYSQ, HR_ROUTTYP, 
HR_ROUTNUM, HR_ROUTAUX, and HR_DIRECTN. Other types of highway 
include functional route and local routes which is not classified as state route and is 
managed by TDOT. Since the majority of highways are Interstates or State routes, the 
rest was not included in this study. 

 
Table 5- 1 Number of segments for each type in HPMA (roughness data) 

 

Type of highway ID in 
HPMA 

Total collected 
mileage 

Percen
tage,% 

Interstate I 3708 16.1 
State route SR 19022 82.5 

Others 0A,0E,0F,0
h,T,0 

330.7 1.4 

 
5.1 Completeness of pavement condition data 

 
The total coverage of pavement condition data is defined as, 

 
(Eq. 5-1) 

 
Where, Ma is the actual collected length; Moverlay is the overlaid length; Mp is the total 
length of the collected segments. 

 
In HPMA, each segment was generally reported at one-tenth of a mile. The length of 
the last sub-segment of each segment is usually less than 0.1 mile. The actual collected 
length is calculated by summing up the length of each sub-segment as listed in Eq. 2. 
The length of each sub-segment (di) is the difference of “Beg_mil” and “End_mil”. 

 
 

 

Where, . 

(Eq. 5-2) 

 
The total length of the collected segments, MP is calculated by summing up the lengths 
of each segment (Li), as listed in Eq. 3. 



  (Eq. 5-3) 
 
 

The overlaid length (Δi) is determined by the difference of actual collected length of 
segment di and length Li of each segment. If Δi >0, there is overlaid within one 
segment; If Δi <0, it means there are gaps within the segment; If Δi =0, it means the 
collected length fully covers the segment. 

 
                                                  (Eq. 5-4) 

 
 

Figure 5-1 and Figure 5-2 illustrate the coverage and total collected length of roughness 
and rutting. The coverage after 2002 were generally greater than 90%. Before 2002, the 
total coverage ranged from 20% to 90%. In 1995, the actual collected length was only 
80.52 miles. Comparing with other years, it can be inferred that there was something 
disturbed the data production in 1995. It can also be seen that the total collected length 
of roughness and rutting data tended to increase after 2002. 

 

 
 

Figure 5- 1 Total coverage of pavement condition data (Roughness/Rutting) 



 

 
 

Figure 5- 2 Collected lengths (Roughness/Rutting) 

Figure 5-3 and Figure 5-4 illustrate the coverage and total collected length of distress 
data. The collection of distress data started from 1998. The coverage of distress data 
was generally greater than 80%. The total collected length of distress data were from 
7000 miles to 8000 mile annually. 

 

 
 

 
Figure 5- 3 Total coverage of pavement condition data (Pavement distress data) 



 

 
 

Figure 5- 4 Collected lengths (Pavement distress data) 
 

5.2 Evaluation of abnormal data 
 

The process of validity check is to identify those data out of the reasonable ranges. 
Table 5-2 listed the expected values for distress for some state agencies. According to 
the historical data from HPMA, the expected values for distress for TDOT were listed 
in Table 4-3. 

Table 5- 2 Agency expected values for distress 
 

Distress Colorado1 Nebraska2 Oklahoma3 

IRI 800 in./mi. +190 in./mi. 20-600 in./mi. 

Rut Depth 1.5 in +0.2 in. 0-1.25 in. 

Faulting - +0.04 in. 0-0.8 in. 

Note: 1) the maximum expected values for each one-tenth of a mile; 2) maximum 
increase of expected value from previous year’s survey; 3) the maximum expected 
values for each 0.01-mile. 

 
The length of road sections with abnormal data is illustrated in Figure 5-5 and Figure 5-
6. Figure 5-5 indicates that the length of sections with IRI out of range was less than 10 
miles except for 2002 (15.785 mile). Comparing with the total collected length, the 
ratio of abnormal data was less than 1%. Figure 5-6 illustrates the length of sections 
with abnormal rut data. In 2002, the length of sections with rut depth greater than 1.25 
in. was 5718 miles for the left side and 552 miles for the right side. This means over 



90% collected segments had abnormal data in the left side while about 10% collected 
segments in the right side. There might be something wrong with either the data 
collection equipment or data post-processing. The length of abnormal data seemed 
reasonable on other years. 

 

 

Figure 5- 5 Length of sections with abnormal data (IRI out of range) 
 
 
 

Figure 5- 6 Length of sections with abnormal data (rut depth out of range, since 2000) 
 

Generally speaking, the criteria for expected value in Table 4-3 seem reasonable. 
Comparing with other states in Table 5-2, the recommended ranges are covered by the 
ranges specified by other states. By applying these criteria, the agency can assess the 
basic quality of data production and determine whether some sections with out-of-range 
data needs to be re-collected or re-processed before accepted. 



 

According to the expected value in Table 4-4, the length of road sections in which the 
distresses were out of range was listed in Table 5-5. The abnormal distress data were 
observed before 2008, whereas no section was found to have abnormal distress data 
after 2008. 

 
Table 5- 3 Length of section containing out-of-range distress data 

 
Ye
ar 

Length of out-of-range 
sections 

19
98 

13.8 

19
99 

147.31 

20
00 

0 

20
02 

38.69 

20
03 

45.02 

20
04 

2.3 

20
05 

21.24 

20
06 

11.42 

20
07 

49 

20
08 

129.37 

20
09 

0 

20
10 

0 

20
11 

0 

20
12 

0 

20
13 

0 

 
5.3 Explore the function of completeness check in HPMA 

 
The highway data check function in HPMA could be found from “Data Update” menu. 
It can check for completeness, pavement type and width, condition, and work history. 

 
In the completeness part, the following types were activated to be checked by 



users.(See Figure 5-7) 
• Landmarks/Events, which is reported in total counts of Landmarks/Events or 

no Landmark/Event data; 
• Administrative, which is reported in length of highway gaps, length of no data 

occurrence; 
• Jurisdictions, which is reported in length of highway gaps, length of no data 

occurrence; 
• Environment, which is reported in length of highway gaps, length of no data 

occurrence; 
• Geometric, which is reported in length of highway gaps, length of no data 

occurrence; 
• Shoulders, which is reported in length of highway gaps, length of no data 

occurrence; 
• Traffic history, which is reported in length of highway gaps, length of no data 

occurrence; 
• Roughness/Rut, which is reported in length of highway gaps, length of no data 

occurrence; 
• Distress, which is reported in length of highway gaps, length of no data 

occurrence. 
 

The some of these above data have seldom changed since they were put into the 
HPMA, such as landmarks/events, administrative, jurisdictions, environment, etc. 
Others may change accompanied with the pavement maintenance or rehabilitation, such 
as geometric, shoulders. The traffic history, roughness/rut and distress will change every 
year when new recorded data are added. 

 

Figure 5- 7 Interface of data completeness check in HPMA 



In the “pavement type/width” part, the user can check with the roadway geometric data 
such as pavement width, numbers of lanes, etc (see Figure 5-8). It consists of three 
main options. 

• The pavement type with project segment and/or distress data reported the record 
conflicts on pavement type and pavement distress type (see Figure 5-9); 

• Pavement width with project segment reported the inconsistency of pavement 
width in project and geometry (see Figure 5-10); 

• Pavement width/No. of Lanes reported the segments less than selected lane 
width (Standard land width-Check difference) and other pavement width 
information about the total length of selected segment (see Figure 5-11). 

 
 

Figure 5- 8 Interface of checking pavement type and width in HPMA 

Figure 5- 9 Report of record conflicts on pavement type and pavement distress 



 
 

Figure 5- 10 Report of record conflicts on pavement width in project and geometrics 
 

Figure 5- 11 Report of lane width information of the selected segments 

In the “condition” part, the user can check with the completeness of pavement 
condition data. (See Figure 5-12) After selecting the interested segments and clicking 
“View Results”, a table showed the record of roughness data and distress data will pop 
out. It will reveal details of the missing data of pavement roughness and/or distress in 
each segments involved in this selection, including: 

• Highway ID information; 
• “R length” and “D length” length of segments that don’t have roughness data 

(IRI and RUT); 



• “Gap length” length of segments that have data gaps. 
 

An example of report of completeness of roughness and distress was illustrated in 
Figure 5-13. 

 

 
Figure 5- 12Interface of checking pavement condition data in HPMA 

 
 

 

Figure 5- 13 Report of roughness and distress completeness of selected segments 

In the “Work history” part, the user can check with the maintenance record of selected 
pavement segments. (See Figure 5-14) The detailed information will be reported in the 



table by clicking the “View results”. (See Figure 5-15) It would illustrate the length of 
segments with no construction and/or maintenance. 

 

Figure 5- 14 Interface of checking work history in HPMA 
 

Figure 5- 15 Interface of checking work history in HPMA 



6. Evaluation of variability of roughness data 
 

Variability describes the bias and dispersion of series of measurements to a true value 
or a reference value. It consists of accuracy and precision. Accuracy can be considered 
as systematic errors, whereas precision can be considered as random errors. These 
errors generate data variability and cause uncertainty on pavement evaluation and 
maintenance decision. To better understanding the data variability, a systematic 
evaluation of variability of roughness data was conducted. 

 
6.1 Methodology 

 
The variability of roughness data was evaluated in terms of different pavement 
condition. The pavement conditions were classified based on pavement distress index 
(PDI). Figure 6-1 illustrates the analysis scheme. The roughness data were first grouped 
into “Interstates” and “State routes”. For each route type, the data were grouped based 
on the PDI value. There were three scenarios considered: PDI=5, 2.5<PDI<5, and 
PDI≤2.5. 

 
 
 

 
 

Figure 6- 1 Analysis scheme for roughness data 
 

To evaluate the data variability, the following statistics parameters were used. 
• Sum of squares due to error, SSE; 
• Mean squared error, MSE; 
• Root means squared error, RMSE; 

 
Assume that X(x1,x2,…,xn) and Y(y1,y2,…,yn) represent the pavement roughness data 



collected from each side. SSE is the sum of square difference (d2) from the measured 
point to equity line as shown in Eq. 6-1. 
 

  (Eq. 6-1) 
 

The MSE is the mean of square difference is calculated as Eq. 6-2, 
 
 
 

 
 

The RMSE is determined by Eq. 6-3. 

(Eq. 5-2) 

 
 
 

(Eq. 6-3) 
 
 

The RMSE indicated the overall difference of roughness data between two sides. The 
higher the RMSE is, the higher difference of IRI value (or rutting depth) between two 
sides will be. 

 
Matched pairs tests were used to study the mean difference of data from both sides. The 
matched pairs tests were conducted by assuming the two population distributions are 
normal with unequal variances and the two random samples are independent. In this 
study, the hypothesis was: 

 

 

 
 
 

 

For a level α, Type I error rate, 
 

Reject H0 if 
 

For a specified level α, the approximate confidence interval for  is 



 
 

Where, the t percentile has 
 

, with 

6.2 Variability of International roughness index 
The results of RMSEs for Interstate and State route at different PDI levels were 
illustrated in Figure 6-2 and Figure 6-3. The RMSEs indicates the bias of measured 
points towards the equity line. The lower the RMSE is, the closer the measured value 
from both sides will be. 

Both Figure 6-2 and Figure 6-3 indicate that the RMSEs increased with the decreasing 
of PDI for interstates in 6 out of 12 years while that for state routes in 10 out of 12 
years. This means the pavement distresses do affect riding of the test vehicle. Data 
variability increased as the pavement performance decreased. There was a more 
significant influence of PDI on IRI for state routes than for interstates. RMSE values 
for interstate were lower than that for state routes. The lowest RMSEs were round 20.0 
in./mi. for state routes, whereas the largest RMSEs were round from 10.0 to 25.0 in./mi 
for interstates. This means the variability of IRI for interstates were significantly lower 
than state routes. Based on RMSEs result, it seemed that IRI results for interstates were 
generally less affected by the pavement distress and exhibited a lower variability. 

Figure 6- 2 RMSE of IRI (Interstates) 



Figure 6- 3 RMSE of IRI (State Routes) 

Figure 6-4 illustrates the results for matched pairs test. The error bar on each column 
indicates the 95% confidence interval. If zero falls down within the range of confidence 
interval, the mean value for IRI from both sides were statistically identical. It can be 
seen that: 

• The mean difference of IRI was generally less than zero for both interstate and 
state route, indicating the mean IRI from left side was lower than right side. 
Note that results in 2002 and 2003 should be excluded since the samples 
population in these years was small. 

• With the decreasing of PDI, the mean difference of IRI seems to be increasing 
which indicated that pavement distress may increase the variability of IRI. 

• The mean difference of IRI for state route was lower than that for interstate 
which indicated the variability of IRI for interstate was lower than state route. 
Since the pavement performance of interstate is generally better than state route, 
it can be concluded a lower mean difference of IRI may be an indication of the 
better pavement condition. 

• Lower mean difference of IRI and larger confidence interval may be the 
indication of good quality for pavement condition data. For example, quality of 
pavement condition data in 2007, 2010 and 2012 seems better than that in 2002 
and 2003 for interstate. 

• The mean of IRI from left side was generally lower than right side. This 
indicated that the pavement surface seems smoother on the left side than on 
right. 



 

 
 
 

(a) Interstates 
 
 

( 
b) State Routes 

 
Figure 6- 4 Difference of IRI from both wheels 

6.3 Variability of rut depth 
 

The results of RMSEs for Interstate and State route at different PDI levels were 
illustrated in Figure 6-5 to Figure 6-6. One may not find: 



• It illustrated that 6 out of 12 years showed a trend of increasing of RMSEs with 
the decreasing of PDI for state routes. This means the PDI seemed to affect the 
rutting depth in some degree for state routes. 

• It was also found that RMSEs for interstates seemed a slight lower than state 
routes which means the variability of rutting depth from both sides for state 
routes was larger. 

• It indicated that in calendar year 2002, the variability of rutting depth is greatest 
among all the 12 years according to the value of RMSEs in each year. The 
variability of rutting depth for interstate showed a more stable trend than state 
routes. 

 
Based on RMSEs result, it seemed that results of rutting depth for interstates were 
generally less affected by the pavement distress and exhibited a lower variability given 
that the fact that pavement conditions for interstates were better than state routes. 

 
 

 
 

Figure 6- 5 RMSE of rutting depth (Interstates) 



 

 
 
 

Figure 6- 6 RMSE of rutting depth (State Routes) 
 

Figure 6-7 illustrated the results for matched pairs test. It can be seen that: 
• The mean differences of rutting depth were generally greater than zero with 

PDI>2.5 for interstates except 2009 and 2013. This indicated the rutting depth 
in the left side is larger than the right for interstates. 

• It seemed that the data quality became stable after 2003. And the changes of 
rutting depth from both sides were less than 0.05 in. 

• The results indicated that rutting depth from both sides were not statistical 
identical. However, it can be concluded that the rutting depth from both sides 
were very close since the 95% confidence interval were within +0.05 in. 

 
 



(a) Interstates 
 
 

 
 

(b) State Routes 
 

Figure 6- 7 Difference of rutting depth from both wheels 
 

6.4 Determination of allowable variation of roughness data between two sides 
 

The pavement serviceability index (PSI) is a function of IRI. It is also a synthesized 
index for making pavement maintenance strategies. The errors of IRI will influence the 
variation of PSI. 

Given the series {X i }, the mean absolute error  ∆X can be defined as 
 

 
(Eq. 6-4) 

 
Where, n is the sample number. 

 
The relative error, Er , is the ratio of mean absolute error to mean value is defined as 
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 (Eq. 6-5) 
 

The standard deviation σ x can be written as 
 

σ x = 
 

 

 
(Eq.6-6) 

 
The above equation represents the standard deviation when the sample number n→∞. 

 

For the limit number of samples, the unbiased estimation of standard deviation Sx is 
written as 

 
 

Sx = 
 

 

 
(Eq. 6-7) 

 
For dependent valuable, assume that the relationship between indirect measurement 
f and direct measurements, x, can be written as 

 

f = f (x1, x2,..., xn ) 
 

(Eq. 6-8) 
 

The mean value and absolute error for the measurements can be written as, 

 

 

 

f = f (x̂1, x̂2 ,..., x̂n )+ Ε(ε1,ε 2 ,...,ε n ) 

 
 

 
 
 
(Eq. 6-9) 

 

f can be represented by Taylor’s series at  (x̂1, x̂2 ,..., x̂n )as Eq. 6-10. 
 

 
 

(Eq. 6-10)
 

Where: R(x1 , x2 ,..., xn ) is the infinitely small part. 
 

Comparing Eq.6-9 with Eq. 6-10, the absolute error can be written as by omitting R2 (x) 
, 



The relative error can be 
written as, 

 
 

 
 
 
 

(Eq. 6-12) 
 

The standard deviation of f can be written as 
 
 

 
(Eq. 6-13) 

 
The relative standard deviation of f can be written as 

 
 

(Eq. 6-14) 
 

According to the HPMS, the PSI model is 
written as 

 
PSI = 5∗ e(−0.0055×IRI ) 

 

 
(Eq. 6-15) 

 
The absolute error can be written as, 

 

ΕPSI = 0.0275∗ e(−0.0055×IRI ) • ε IRI                                          (Eq. 6-16) 

The relative error can be written as, 
 

(Eq. 6-17) 

 
The absolute standard deviation of PSI is determined as, 

 

σ PSI = 0.0275∗ e(−0.0055×IRI )σ 

 
(Eq. 6-18) 

 
The relative standard deviation of PSI is determined as, 
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(Eq. 6-19) 
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Eq. 6-19 indicated that the absolute error of PSI is determined by IRI value and its 
error. The relationships between absolute error of PSI and IRI error were illustrated in 
Figure 6- 
7. It can be seen that the absolute error of PSI will increase with the increase of IRI 
error and decrease of IRI value. In general, IRI value is no less than 20 in./mi. 
Therefore, the curve with IRI of 20 determines the upper limit. Eq. 6-19 represents that 
the relative error of PSI is dependant of IRI error. The curve in Figure 6-8 can be used to 
estimate the relative variance of PSI based on IRI error. 

 
 

 
 

Figure 6- 8 Relationship of EPSI and εIRI 



 

 
Figure 6- 9 Relationship of relative error of PSI and ε IRI 

Table 4-5 lists the suggested tolerance of variability of roughness data (IRI and rutting 
depth) by analyzing the historical data. The tolerance of variability of roughness data is 
determined in terms of the route types. For interstates, the percentage of sections with 
IRI difference less than 10.0 in./mi. should be at least 95%. For state route, the tolerance 
of IRI difference is wider comparing with the interstates. The percentage of sections 
that have higher variations (difference of IRI greater than 30.0 in./mi) in IRI between 
two paths should be less than 10%. 
 
Table 6-1 lists the influence of IRI difference on PSI difference. A difference of IRI 
with 10.0 in./mi. may generate PSI difference less than 0.1, whereas, a difference of IRI 
with 30.0 in./mi can generate PSI difference up to 0.2. This means by applying the 
requirement in Table 4-5, the expected PSI difference could be less than 0.1 for 
interstates and less than 0.2 for state routes. 

Table 6- 1 Influence of IRI difference on PSI difference 
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Figure 6-10 and Figure 6-11 illustrate the percentage of sections with the difference of 
IRI over the limit for interstates and state routes. The length of sections over limit 
before 2000 was generally greater than that after 2000. TDOT contracted with two 
different service providers at that time. Therefore, the later contractor might utilize new 
technology or implement new procedure during collection production which resulted in 
less variability of IRI. The percentage over the limits ranged from 5.0% to 7.5% during 
2002 to 2013, which was slightly higher than the value in Table 4-6. Therefore, re-
check or re-collection may be needed based on request from the pavement management 
engineers. It is recommended that those sections with PSI value less than 2.70 be re- 
checked. 

 

Figure 6- 10 Percentage over the variation limit-IRI (Interstates) 
 

 
Figure 6- 11 Percentage over the variation limit -IRI(State routes) 



Figure 6-12 illustrates the percentage over the limit of rut depth difference. The 
percentages over limit were less than 5% after 2004. Therefore, the requirement for 
rutting depth in Table 4-5 seems reasonable. The percentages over limit were higher 
than 95% in 2002 and 2003. This means there might be some collection errors in these 
two years. Therefore, the rutting data in these years were questionable. 

 

 
Figure 6- 12 Percentage over the variation limit –rut depth



7. Evaluation of variability of distress data 
The major source of errors for distress data usually comes from the misinterpretation of 
distress images. As most state DOTs, TDOT utilizes full-automated approach to interpret 
pavement surface distress images. The accuracy of distress data are directly associated with 
the quality of distress images and distress identification system (or algorithm). AASHTO 
PP68-10 also specifies the minimum requirements for an applicable Image and Distress 
Identification System (IDIS). 

7.1 Source of errors for distress data 
The online survey indicated most state agencies are using automatic image and distress 
identification system to determine and calculate the extent and severity level of surface 
distress. For the automatic distress recognizing system, the quality of image will have 
significant influence on the interpretation of distresses. To eliminate the errors of distress 
data caused by the image quality, distress image will be picked up to ensure that only high-
quality images are used for calculating distress extent in the post-processing procedures. 
 
The core of IDIS is to split an image into the areas of interests and the area of background. 
The interested areas are those areas with distresses and used to calculate the distress extent 
and severity level. Due to the complexity of surface features and difference of lighting 
conditions when the distresses are imaged, the background noise may affect the 
determination of areas of interests. Therefore, many software systems have been or are 
being developed to decrease the background noise of the original image so that the 
distresses could be easily identified. 
 
Below is an example of a procedure to process an image. Figure 7-1 illustrated the original 
image of a crack. The original image is firstly converted into grey-scale images as 
illustrated in Figure 7-2. The grey-scale image has the image matrix with values ranging 
from 0 to 255, with ‘0’ representing the darkest area and ‘255’ representing the lightest 
area. 

Figure 7- 1 Original image of a crack 



Figure 7- 2 Gray-scale image and image matrix 

The boundary of a crack can be determined by defining a threshold through which the gray-
scale image can be converted into binary image with only two values in the matrix. Figure 
7-3 illustrated the binary image of different splitting threshold of gray-scale image. It can 
be seen that the threshold of a gray-scale image affect the results of crack boundary 
significantly. Figure 7-4 illustrated the change of distress areas at different splitting 
threshold. It was found that the distress area is sensitive to the threshold. As the threshold 
increased from 5 to 32, the distress areas increased 250%. With the increase of the 
threshold, both distress extent and severity level will increase. Therefore, a threshold 
through which a gray scale image is converted to binary image is an important factor that 
influences the precision and accuracy of distress data. 

 

(a) 32 (b) 18 (c) 13 (d) 8 (e) 5 
 

Figure 7- 3 Binary images at different thresholds 



 

 
 

Figure 7- 4 Change of distress areas at different splitting threshold 

To date, there are numerous of algorithm for splitting an objective from a background. The 
core of these algorithms is to find a reasonable threshold that can determine the areas of 
interest within an image. Unfortunately, due to high variations in image quality and 
interference of surface features, it is difficult to find a certain threshold that can be used for 
identifying all the distress images. Some factors that influence the threshold for an image 
are summarized as below. 

1) Surface features 
Surface features include pavement marks, surface tire tracks, surface contaminations, etc. 
These features significantly influence the interpretation of distress. It is hard to detect these 
surface features and eliminate them from the image by automatic distress identification 
methods. Images with these features may either be moved manually or be excluded in 
calculating the distress value. There are also algorithms to detect these surface features. 
However, most of them are still under development and far from implementation. 

 
2) Background noise 

Background noise may be recognized as the objective of interest if the pixel values for 
background noise were within the range of objective pixel value. It occurs when the 
lighting conditions for the image is weak. For newly constructed asphalt pavement, it may 
be more different to recognize a distress since the distress image may have low contrast. In 
response to this issue, contrast enhancement is applied prior to differentiate the background 
noise from an objective. There are also other algorithms, such as smoothing average, to 
eliminate the background noise. 

 
From the respective of state highway agencies, one of the most concerns is that how to 
quantitatively evaluate the errors of distress data and the consequence of data errors on 



maintenance decision. To achieve this goal, the state agencies need to determine the 
reference value based on which the errors of distress data can be estimated. The sample 
images with known extent and severity level of distresses will be selected to construct a 
standard distress database. The difference between the distress value (extent and severity 
level) obtained from an Image and Distress Identification System and the reference value 
(extent and severity level) can be used to determine the errors of distress data. It should be 
note that images at different quality level may also be included in the standard distress 
database so that the influence of image quality on the identification of distress can be 
estimated. 

 
7.2 Influence of Variability of Distress Extents on PDI 

 
The cause of variability of distress in extent comes from those distresses that are not 
identified by the IDIS. Therefore, the measured PDI may be higher than the true value 
which results in overestimating the current pavement condition. Eq. 7-1 can be used to 
calculate the probability that the distress can be identified. 

 
  

(Eq. 7-1) 

Where, E represents for the distress extent; Et is the true value of distress extent at a 
specific severity level; g(x) represents for the distribution function; p is the probability that 
the specified distress can be identified. The distribution function can be determined through 
field verification test. 

 
Figure 7-5, 7-6 and Figure 7-7 illustrate the distribution of PDI at each severity level by 
Monte Carlo simulation. The true value of percentage of fatigue crack (Et) was assumed to 
be 50%. It is also assumed that the distribution function g(x) satisfy normal distribution 
with mean value of µ, and standard deviation of σ. Therefore, the normalized distribution of 
measured value satisfies standard normal distribution as Eq. 7-2. The distribution 
parameters for each scenario can be determined based on Et and P. 
 

(Eq. 7-2) 
 

Figure 7-5 (a) and 7-1(b) illustrate the distribution of measured PDI at low severity level. 
The cumulative distribution for PDI<3.96 was about 70% when P=0.5. PDI=3.96 was 
calculated by assuming distress extent of fatigue cracks was 50% at low severity level 
while no fatigue cracks was observed at moderate and high level. This means if all the 
present fatigue cracks was at low severity level and the probability of all the cracks being 
identified was 0.5, the probability that measured PDI equals to or less than the true value 



was 0.7. This means the probability that the current pavement condition was overestimated 
would be less than 0.3. It is also found that if the probability of all the cracks being 
identified was 0.85, there was less likely that the measured PDI was greater than the true 
PDI. 

 

(a) Low severity (p=0.5) (b) Low severity (p=0.85) 
 

Figure 7- 5 Distribution of measured PDI at low severity level 

Figure 7-6 (a) and (b) illustrate the distribution of PDI at moderate severity level. The true 
PDI value was 3.41. It is found that the cumulative distribution were 50% and 80% for 
P=0.5 and P=0.85, respectively. This means if the probability of cracks that can be 
identified were 0.5 and 0.85 at moderate severity level, the probability that PDI greater than 
the true value would be 0.5 and 0.8. This is significantly lower than the scenarios at low 
severity level. This indicated there was limited improvement on measured PDI by 
increasing the accuracy of extent of fatigue cracking at moderate level Compared to that at 
low level. 

 

(a) Moderate severity (p=0.5) (b) Moderate severity (p=0.85) 

Figure 7- 6 Distribution of PDI at moderate severity level 



Figure 7-7 (a) and (b) illustrate the distribution of PDI calculated from the measured PDI at 
high severity level. It can be seen that if the accuracy of data was low at high severity level, 
the accuracy of measured PDI would be compromised. The probability of PDI less than the 
true value was only less than 0.6 (cumulative distribution was 60%) with the P=0.5. With 
the increase of accuracy (P from 0.5 to 0.85), the cumulative distribution of PDI<2.6 (the 
true value at this severity) was more than 90%. This means there seems less likely that the 
measured PDI was greater than the true value. 

 
 

(e) High severity (p=0.5) (f) High severity (p=0.85) 

Figure 7- 7 Distribution of PDI calculated from the measured PDI at high severity level 

 

FIGURE 7-1 to Figure 7-2 presented the results from simulation by assuming the true 
value, measured mean value, and measured standard deviation. These parameters can be 
evaluated and determined by field verification test through which the results from manual 
distress survey can be compared with that from automated survey. The results from manual 
survey may be considered as true value. By running multiple automated tests, the measured 
mean value and measured standard deviation of automated survey can be determined. 
Then, the two parameters, Et and p, at difference scenarios from Equation 6 can be 
calculated and the influence of variability of distress data on pavement distress indices can 
be evaluated. 

 
The accuracy of extents of distress data has influence on PDI, depending on the distress 
severity level. At low severity level, when P=0.85, the measured PDI is close to the true 
value. At moderated and high severity levels, there is a difference between the measured 
PDI and the true PDI, indicating the accuracy of distress increased at higher severity levels. 



7.3 Influence of Variability of Distress on PDI 
 

The severity levels of crack-related distresses are defined by the crack width. Figure 7-8 
illustrates the general framework of determining crack-related distress content based on 
each severity level. The extent of distress at each crack width was firstly calculated. Then, 
the extents of distress at each severity level are summed up in terms of crack width. It can 
be seen that there might be a transition zone in which a crack may be classified into a wrong 
severity level. It is evident that the existing of transition zone may potentially generate bias 
on PDI calculation. To quantify the influence of transition zone on the calculation of 
distress value, the transition ratio curve is established. 

 
 

 

Figure 7- 8 General framework to calculate extent of distress based on severity level 

Figure 7-5 illustrates a typical transition ratio curve. The transition ratio ranges from 0 to 1. 
Transition ratio of “0” indicates that there is less likely that a crack may be classified into 
this level while “1” means there is most likely that a crack may be classified into this level. 

 is the transition function at each severity level. w1-2 is the boundary of low 
and moderate level, while w2-3 is the boundary of moderate and high level. It can be seen 
that cracks whose widths are far away from the transition zone are less likely to be 
classified into a wrong level. The sum of transition function at each severity level for an 
identified crack with a width wi equals to 1. Eq. 7-3 provides the attribution of the transition 
function. 

Figure 7- 9 Transition Ratio Curve 



 

(Eq. 7-3) 
 
 

The transition function seems a reasonable way to quantify the influence of variability of 
severity level on PDI. However, the establishment of a transition function is time-
consuming and varies from different distress identification techniques and algorithms. 
Therefore, the transition matrix was presented to quantify the influence of variability of 
severity level on PDI. The transition matrix is proposed based on the conception shown in 
Figure 7-6. It describes the transition ratio between different severity levels. The 
parameters in transition matrix are easily to be determined through field verification tests 
by comparing the results from automated survey with those from manual survey. The 
transition matrix is expressed as Eq.7-4. 

 

  (Eq. 7-4) 

Where,  is the transition matrix for each type of distress; is the ratio that an 
individual 
distress at severity level i may be changed into severity level j. (i,j=1,2,3 represent for Low, 
Moderate, and High severity). The sum of each row in transition matrix P should be equal 
to 1, which is expressed as Eq. 7-5. 

 
  (Eq. 7-5) 

 
The original distress vector for individual distress k,  is expressed as Eq. 7-6. 

 
 

(Eq. 7-6) 
 
 

The adjusted distress value D’(i) can be determined by transition matrix, which is expressed 
as Eq. 7-7. 

  (Eq. 7-7) 
 

The adjusted distress value includes the influence of variability of severity level. It can be 
used as a benchmark to evaluate the impact of variability on distress severity on PDI. 
Pavement sections with only block cracks in 2013 were extracted from the database. Four 
transition matrices PL, PM, PH and Pmix were considered as listed in Equation 13. Note that 
the values in the transition matrices were assumed based on experience. The transition  



matrix can be determined by comparing the difference between the distress data from 
automated survey and manual survey. PL, PM, and PH only considered the influence of 
single severity level, while Pmix considered the interaction between severity levels. 

 
 
 
 
 

(Eq. 7-8) 
 
 
 
 
 
 

Figure 7-6 illustrates the comparison between measured PDI and adjusted PDI. The 
measured PDI were collected from sections with only wheel path cracks in 2013. The 
measured PDI were calculated by raw distress value while the adjusted PDI were calculated 
by the equation above. It can be seen that the adjusted PDI were generally higher than 
measured PDI. This means the variability of distress severity may generally overestimate 
the current pavement condition. 
 
Figure 7-6 (a) indicates that the variability at low severity level may only influence the 
sections with measured PDI greater than 3.5. If the measured PDI is less than 3.5, there is 
only slight difference between the measured PDI and adjusted PDI. Figure 7-6 (b) indicates 
that there is a significant difference between measured PDI and adjusted PDI with 
measured PDI above 2.5. This means the variability at moderate severity level may be 
considered as a significant influence factor for the accuracy of PDI. Figure 7-6 (c) 
illustrates an opposite tendency Compared to other scenarios. The measured PDI seems less 
than adjusted PDI, which means variability at high severity level may underestimate the 
current pavement condition. This is because some distresses at high severity level were 
treated as moderate or low level as shown in the transition matrix, resulting in an increased 
adjusted PDI value. Figure 7-6 (d) illustrated an interaction of variability of distress at 
different severity level. It is found that there was a significant difference between measured 
PDI and adjusted PDI with measured PDI ranging from 2.5 to 4.0. With the increase of 
measured PDI, the difference between two indices decreased. Since PDI of 3.0 is the 
trigger value in the decision tree used by TDOT, the variability of distress at moderate 
severity level may influence the maintenance decisions significantly. 



 

  
(a) PL (b) PM 

(c) PH (d) Pmix 

 
Figure 7- 10 Comparison between measured PDI and adjusted PDI 



8. Evaluation of data variability on pavement maintenance planning 
 

8.1 Framework of Quality Analysis at Network-level 
 

Figure 8-1 illustrates the loop of data quality analysis. Field tests are performed before data 
production to verify the test equipment and continue during data production process. The 
test results from the field verification tests can be used to evaluate the accuracy and 
repeatability of test equipment and estimate the errors between the collected data and the 
reference value. By Compared to the data quality requirements, pavement managers can 
evaluate the data quality and decide the acceptance and confidence of the collected data. 
The quality analysis can be performed on a specified road network to quantitatively 
evaluate the influence of data variability on maintenance planning. Based on the results 
from quality analysis, suggestions on data quality requirements on next collection period 
can be made. Figure 8-1 provides a method through which the requirements for data quality 
can be determined. This means the data quality requirements depend on the current 
pavement condition and maintenance decision approaches. 

 

Figure 8- 1 Loop of data quality analysis 
 

8.2 Influence of Data Variability on Maintenance Planning 
 

In order to evaluate the influence of data variability on maintenance planning, the 
pavement condition data in 2013 were extracted from PMS which covered 8,093.8 
centerline miles of highways. The decision tree in the PMS of TDOT used for this case is 
shown in Figure 8-2. 
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Figure 8- 2 Decision Tree for Maintenance and Rehabilitation analysis 
 

FIGURE 8-3 illustrates the influence of the accuracy of IRI on maintenance planning. Four 
more scenarios were analyzed by assuming there are ±5% and ±10% errors of IRI value. It 
can be seen that the maintenance planning changes as inclusion of IRI errors. Compared to 
the control group, an error of ±5% IRI may generate ±3.1% errors of percentage of sections 
that need to be treated with Code MO2400 and ±2.7% errors of percentage of do-nothing 



sections. There were slight changes on sections with other code as well. As the IRI error 
increased, the difference between the control group and error groups increased. With ±10% 
IRI error, the errors of percentage of sections with Code MO2400 could be as high as 
±6.3%. 
 

 

Figure 8- 3 Influence of accuracy of IRI on maintenance planning 

FIGURE 8-4 illustrates the influence of accuracy of rut depth on maintenance planning. It 
can be seen that the difference between the control group and error group were less than 2% 
with the inclusion of ±20% rut depth error. This means that there was almost no influence 
of rut depth error on maintenance planning. This is because rut depth are generally low and 
+20% may still well under the trigger value. It was also found that there was no difference 
between control group and error groups for sections with code Recon, O400, and MO4200. 
This is because these maintenance codes are independent of the rut depth in the decision 
tree. 

 

Figure 8- 4 Influence of accuracy of rut depth on maintenance planning 



FIGURE 8-5 illustrates influence of errors of distress extent on maintenance planning. The 
distress extent in the error group was 85% to the original distress extent. In another word, 
the missing distress extent in error group was 15%. FIGURE 13 indicated that the total 
length of sections that need to be maintained decreased if there were missing distress extent 
in error group. The percentage of sections with code MO2400 and O200 increased while 
others decreased. In general, with the inclusion of errors in distress extents, there were 
slight changes on maintenance planning Compared to the control group. Therefore, it can be 
concluded that a maximum error of distress extents of 85% is sufficient for the purpose of 
maintenance and rehabilitation analysis and may not significantly influence the results of 
maintenance planning in Tennessee. 

 

Figure 8- 5 Influence of errors of distress extent on maintenance planning 

FIGURE 8-6 illustrates the influence of error of distress severity level on maintenance 
planning. Three transition matrices (Pmix-1, P mix-2 and P mix-3), which represent different 
accuracy of distress identification from high to low, were considered as listed in Equation 
14. 

 
 
 
 

(Eq. 8-1) 
 
 
 
 

The percentage of sections that need maintenance increased if there were errors in distress 



severity level. It was also found that the percentage of sections with code MO2400 and 
O200 decreased while that of sections with code Recon, MO400, O400, and MO4200 
increased. It should be noted that the sum of extent for individual distress of the control 
group was the same as the error group. Therefore, the errors of distress severity level 
significantly affect the planning results although all the distresses were correctly identified 
and quantified. 

 
 

Figure 8- 6 Influence of errors of distress severity level on maintenance planning 
 



9. Evaluation of the influence of maintenance actions on condition data 
The maintenance actions may change the general trend of the performance curve. However, 
due to some missing maintenance records, it is impossible to identify all the maintenance 
actions. By analyzing the change of performance indices, it is possible to identify the 
maintenance actions through which the performance curve can be modified. 
 
In this part, the influence of maintenance actions on performance indicators was evaluated. 
The maintenance records were selected from the database since 2002. 

 
9.1 Data preparation 
 
The maintenance records were collected from construction record provided by TDOT. The 
maintenance record consists of segment information and construction information. The 
inventory was listed in Table 9-1. The segment information can be used to identify those 
sections containing a maintenance action between two adjacent collecting years. 

Table 9- 1 Inventory in maintenance record 
 

Segment information Route Type; Route number; County; 
Start MP and End MP; Year; Length 

Construction 
information 

Contract No. ; State ID; Federal ID; Let 
date; Cost; Treatment Activities 

The pavement condition data consists of roughness data and distress data. The inventory of 
roughness data and distress data are listed in Table 9-2. The segment information include 
county number (HR_COUNTY); route type (HR_ROUTTYP); route number 
(HR_ROUTNUM); direction (HR_DIRECTN); beginning and ending milestone of a 
section (HR_BEGMILE; HR_ENDMILE); collecting year (HR_DATYEAR); and other 
information on the road segment. The information can be used to recognize the sections 
that had maintenance actions. 

Table 9- 2 Inventory in pavement condition data 
 

Segment information 

HR_ROUTCOD; HR_COUNTY; 
HR_CNTYSQ; HR_ROUTTYP; 
HR_ROUTNUM; HR_ROUTAUX; 
HR_DIRECTN; HR_DATYEAR; 
HR_BEGMILE; HR_ENDMILE 

Roughness data HR_IRI_RT; HR_IRI_LT; HR_RUT_RT; 
HR_RUT_LT; HR_PSI 

Distress data PDI-overall index; content and severity of 
individual distresses 



 

Table 9-3 lists the counties in Tennessee and their available records in the HPMA since 
2002. 

 
Table 9- 3 Summary of individual tables for pavement condition data 

 
Number 

ID County 
Available 
Records 

Number 
ID County 

Available 
Records 

1 ANDERSON 9202 51 LEWIS 4554 
2 BEDFORD 9846 52 LINCOLN 11137 
3 BENTON 9093 53 LOUDON 11350 
4 BLEDSOE 4344 56 MACON 13834 
5 BLOUNT 11411 57 MADISON 11031 
6 BRADLEY 11644 58 MARION 6166 
7 CAMPBELL 11521 59 MARSHALL 18773 
8 CANNON 4994 60 MAURY 16378 
9 CARROLL 16404 54 MCMINN 11326 
10 CARTER 8284 55 MCNAIRY 17740 
11 CHEATHAM 8417 61 MEIGS 4551 
12 CHESTER 5674 62 MONROE 11417 
13 CLAIBORNE 6390 63 MONTGOMERY 15098 
14 CLAY 4371 64 MOORE 2663 
15 COCKE 11926 65 MORGAN 7196 
16 COFFEE 13750 66 OBION 12124 
17 CROCKETT 7290 67 OVERTON 9009 
18 CUMBERLAND 17319 68 PERRY 6053 
19 DAVIDSON 38380 69 PICKETT 2994 
20 DECATUR 8900 70 POLK 7386 
21 DEKALB 6260 71 PUTNAM 17207 
22 DICKSON 13710 72 RHEA 5441 
23 DYER 15145 73 ROANE 13485 
24 FAYETTE 17219 74 ROBERTSON 15482 
25 FENTRES 7065 75 RUTHERFORD 21993 
26 FRANKLIN 11385 76 SCOTT 4459 
27 GIBSON 15830 77 SEQUATCHIE 4611 
28 GILES 14440 78 SEVIER 11537 
29 GRAINGER 6503 79 SHELBY 42713 
30 GREENE 19091 80 SMITH 9862 
31 GRUNDY 7456 81 STEWART 6635 
32 HAMBLEN 7920 82 SULLIVAN 20037 
33 HAMILTON 23738 83 SUMNER 16483 



34 HANCOCK 4143 84 TIPTON 7964 
35 HARDEMAN 10632 85 TROUSDALE 2766 
36 HARDIN 11875 86 UNICOI 7359 
37 HAWKINS 10351 87 UNION 4213 
38 HAYWOOD 15007 88 VAN BUREN 5040 
39 HENDERSON 16587 89 WARREN 10598 
40 HENRY 12194 90 WASHINGTON 12971 
41 HICKMAN 11735 91 WAYNE 9171 
42 HOUSTON 3720 92 WEAKLEY 13551 
43 HUMPHREYS 7732 93 WHITE 6371 
44 JACKSON 7459 94 WILLIAMSON 18743 
45 JEFFERSON 13307 95 WILSON 17366 
46 JOHNSON 5782    
47 KNOX 28994    
48 LAKE 3249    
49 LAUDERDALE 8562    
50 LAWRENCE 9765    

 

2364 maintenance records out of total 6320 were identified. The pavement condition data 
including IRI, rutting depth, and Pavement Distress Index (PDI) of pre and post 
maintenance action were extracted from the database. The difference of the indicators of 
pre and post maintenance action was calculated. The influence of maintenance actions on 
change of pavement indicators were listed as follows. 

 
9.2 Evaluation of maintenance actions on pavement indices 

 
9.2.1 Influence of maintenance actions on change of IRI and PSI 

 
Figure 9-1 illustrated the distribution of initial IRI and change of IRI between two adjacent 
collecting years for state routes. Figure 9-1 (a) illustrated the distribution of initial IRI 
before maintenance actions. It was found that the mean value of IRI before maintenance 
was 105.9 and 91.7 in./mi for right and left side, respectively. The median quantiles for 
each side were 98.8 and 86.2 for right and left side, which were close to their mean value. 
Figure 9-1 (b) illustrated the distribution of change of IRI due to the maintenance actions. 
The average changes of IRI were 24.8 and 21.1 in./mi for right and left side, respectively. 
Similarly, the median quantiles right and left side were close to their mean value. This 
means the maintenance actions would decrease the IRI by 20 in./mi. in average for state 
routes. 
 
Meanwhile, it can be seen that the maintenance actions may also increase the initial IRI 
(see change of IRI greater than zero). This means the maintenance actions in those sections 
would have little effect on the change of IRI comparing with others without the 



maintenance actions. It seems that the increase of IRI was limited. Figure 9-1 (b) indicated 
that there were less than 10% sections whose increase of IRI were greater than 10 in./mi. 

 

 

(a) Distribution of initial IRI (b) Distribution of change of IRI (ΔIRI) 

Figure 9- 1 Distribution of initial IRI and change of IRI (State routes) 

Actually, the change of IRI (ΔIRI) is related to the initial IRI before maintenance action. 
As the initial IRI increased, ΔIRI increased. However, ΔIRI will decrease with lower initial 
IRI value. Figure 9-2 illustrated the lower limit ΔIRI. The red dot-line indicated the lower 
limit of ΔIRI. It can be seen that with lower initial IRI, ΔIRI decrease. In Figure 9-2, IRI2 is 
greater than IRI1. 
 
Therefore, the probability of ΔIRI1 >0 is greater than ΔIRI2 >0. This indicated that with the 
lower initial IRI, the probability that the post-maintenance IRI greater than initial IRI may 
increase. In another word, there is no effect of maintenance actions on the trend line of IRI. 



 

 
Figure 9- 2 Quantile density contours (state routes-right side) 

 

Figure 9-3 illustrated the distribution of initial PSI and change of PSI (ΔPSI). It can be seen 
that the average initial PSI for state routes was 3.02 with the standard deviation of 0.51. 
There were only a few sections in which the PSIs were over 4.0 or less than 2.0. This 
means most of the maintenance actions were triggered at PSI between 2.0 to 4.0. The 
distribution of ΔPSI indicated that maintenance action increased the PSI by 0.38 in average 
with the standard deviation of 0.38. The distribution also indicated that maintenance action 
would generally increase PSI by less than 1.0. It was also found that in some sections, the 
maintenance action may not significantly increase PSI. In contrast, the PSI was slightly 
lower than the initial value which resulted in ΔPSI less than 0. Figure 6-4 illustrated the 
distribution of initial PSI when ΔPSI<0. It can be seen that initial PSI in these sections were 
3.27 in average which is higher than the average value for the population (3.02).As the 
initial PSI increased, the change of PSI will decrease. Therefore, in some sections with 
higher initial PSI, the improvement of PSI after maintenance actions was insignificant.



  
 

      
 

    
 

    
 

    
 

 
 

 
 

 

      
 

    
 

    
 

    
 

      
 

  
 

    
 

    
 

    

 
 
 

Figure 9- 3 Distribution of initial PSI and change of PSI (State routes) 
 

 

 

  
 

 

Figure 9- 4 Distribution of initial PSI (ΔPSI<0) 
 



Figure 9-5 illustrates the distribution of initial IRI and change of IRI between two adjacent 
collecting years for interstates. Figure 9-5 (a) illustrated the distribution of initial IRI before 
maintenance actions. It was found that the mean values of initial IRI were higher than the 
median value. The IRI from both sides were close to each other. Comparing with Figure 6-
1, both the mean value and median value of initial IRI of interstates were lower than state 
routes. Generally, the maintenance actions were triggered with IRI of 60 in./mi. Figure 9-5 
(b) illustrated the distribution of change of IRI. It seemed that the maintenance actions 
would only decrease the IRI by 7 in./mi. in average. Since the pavement condition of 
interstates were generally better than state routes, the decrease of IRI for interstates caused 
by maintenance action was less significant than for state routes. 

 

 

(a) Distribution of initial IRI (b) Distribution of change of IRI Figure 

9- 5 Distribution of initial IRI and change of IRI (Interstates) 

Figure 9-6 illustrated the quantile density contours for interstates. It was found that the 
change of IRI (ΔIRI) tend to be close to the zero line (dash line). This indicated the 
influence of maintenance action on IRI decreased. Figure 9-5 (b) also indicated that the 
median value of ΔIRI were close to zero (only -5.2 and -3.7 in./mi. for right and left side), 
while the 75% quantiles of ΔIRI for both sides were greater than 0. This means there were 



at least 75% of the sections of which the IRI increased after maintenance actions were 
completed. Meanwhile, it can be inferred that there were less than 10% of the maintained 
sections of which the IRI values were increased by 10 in/mi. IRI value of interstates would 
be generally decreased by the maintenance actions. If not, the increase of IRI should be less 
than 10 in./mi. 

 
 

Figure 9- 6 Quantile density contours (IRI in right side for interstates) 

Figure 9-7 illustrated the distribution of initial PSI and change of PSI (ΔPSI). It was found 
that the initial PSI was 3.64 in average with the standard deviation of 0.51. The distribution 
of ΔPSI indicated that the maintenance action on interstate may generally increase PSI by 
only 0.13 in average. Comparing with the state routes, the improvements of PSI on 
interstates seem limited. This is because the initial PSI for interstates (3.64) was generally 
higher than state routes (3.02). Therefore, the increase of PSI for interstates was limited. 

 
Figure 9-8 illustrated the quantile density contours of initial PSI and ΔPSI for interstates. It 
can be seen that there were two areas with 90% quantile. One was close to zero line (dash 
line) while another was greater than zero. The one close to zero line had initial PSI around 
4.0 which was higher than the other. This indicated as the initial PSI increased, there was 
no significant difference in PSI between pre- and post-maintenance. 



  
 

    
 

  
 

    

Figure 9- 7 Distribution of initial IRI and change of IRI (Interstates) 
 

 

 

Figure 9- 8 Quantile density contours (Interstates) 
 

9.2.2 Evaluation of the influence of maintenance actions on rut depth 

Figure 9-5 illustrated the distribution of initial rut depth and change of rut depth between 
two adjacent collecting years for state routes. Figure 9-5 (a) illustrated the distribution of 



initial rut depth before maintenance actions. It can be seen that the average rut depth before 
maintenance were around 0.11 in. with the standard deviation around 0.08 in. Meanwhile, 
it can be seen that rutting was partially corrected after maintenance actions. The rut depth 
was reduced by 0.02 in. in average. It seems that most of the maintenance actions occurred 
with the low severity level of rutting. This is because rutting is not a major issue for asphalt 
pavement in Tennessee. Most of the maintenance actions were applied to correct other 
distresses or improve the longitudinal roughness. 

 
Figure 9-6 illustrated the quantile density contours for initial rut depth and change of rut 
depth. It can be seen that the zero line (ΔRUT=0) across through the high density area (red 
area) which means the initial rut depth was slightly decreased by the maintenance actions. 
In another word, the change of rut depth seems insensitive to the maintenance actions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Distribution of initial IRI (b) Distribution of change of IRI Figure 

9- 9 Distribution of initial IRI and change of IRI (State routes) 



 
 

 
 

 
Figure 9- 10 Quantile density contours (rut depth in right side for state routes) 

Figure 9-7 illustrated the distribution of initial rut depth and change of rut depth between 
two adjacent collecting years for interstates. Figure 9-7 (a) indicated that the maintenance 
actions occurred with the rut depth around 0.11 to 0.15 in. which was similar to state 
routes. Meanwhile, Figure 9-7 (b) indicated that there was a slightly decrease of rut depth 
due to the maintenance action. Comparing with state routes, the change of rut depth for 
interstates seems less sensitive. 



 
(a) Distribution of initial rut depth (b) Distribution of change of rut depth 

Figure 9- 11 Distribution of initial rut depth and change of rut depth (Interstates) 

Figure 9-8 illustrated the quantile density contours for initial rut depth and change of rut 
depth for interstates. Generally, the density contours for interstates was similar to that for 
state routes. 

 

 
 

 

 

Figure 9- 12 Quantile density contours (rut depth in right side for interstates) 
 

9.2.3 Influence of different maintenance actions on pavement distress data 
 

Figure 9-9 illustrates the distribution of initial PDI and change of PDI. The 75% quantiles 
for initial PDI was 5, which means there were about 25% of the sections free from 
distresses at the time of maintenance actions. The distribution of change of PDI indicated 
that the maintenance may result in an increase of PDI by 0.8 in average. It was also found 
that there were 25% maintained section whose performance become worse. The reasons 
could be: 1) there is little influence of maintenance actions on pavement deterioration; 
and/or 2) there might be errors in interpreting the image. 

 
Figure 9-10 illustrated the relationship between initial PDI and ΔPDI. The linear 
relationship was found between initial PDI and ΔPDI. The results of fitting model were 
listed in Table 9-6. 



  
 

 

 

 
 

  
 

    
 

    
 

    

 
 

 

Figure 9- 13 Distribution of initial and change of PDI (ΔPDI) 
 
 

 

Figure 9- 14 Change of PDI by the influence of maintenance actions 



Table 9- 4 Fitting results of linear model 
 

Summary of Fit Res
ults 

R-Square 0.9
76 

R-Square Adj 0.9
76 

Root Mean Square Error 0.1
34 

Mean of Response 1.1
57 

Observations 481 

 

Parameters Estimates 

Interce
pt 

Estimate 4.8
82 

Standard 
Error 

0.0
27 

Lower 
95% 

4.8
29 

Upper 
95% 

4.9
36 

Slope Estimate -
0.9
83 

Standard 
Error 

0.0
069
8 

Lower 
95% 

-
0.9
96 

Upper 
95% 

-
0.9
69 

 

9.3 Establishment of performance curve 
 

9.3.1 Determination of the initial year for performance model 
 

To establish a performance model to predict the performance change over time, the 
historical data will be employed. Before it can be used to construct performance model, the 
initial year after the latest maintenance action should be identified. 

 



In HPMA, most maintenance and rehabilitation actions with biding documents were 
recorded in system. However, routine maintenance actions were not included since they 
were performed by the TDOT maintenance staffs and without biding document. The 
routine maintenance contains pothole repairs, crack sealing, and patching. These actions 
may have significant influence on the change of pavement performance at the minimum 
road unit (Note the minimum road unit is one- tenth of a mile, by which the pavement 
condition data are recorded). It was also found that a few maintenance and rehabilitation 
actions were excluded in the system out of some reasons. Therefore, a threshold should be 
setup to identify the latest maintenance action. 

 
The indicators which can be used to identify the maintenance action include roughness 
index: IRI, rutting depth; individual distress; and the Pavement performance index 
(Pavement Serviceability Index, Pavement Distress Index and Pavement Quality Index). 
The analyses from the previous quarterly reports indicated that the influence of maintenance 
action on different indicators were different, depending on the types of routes. 

 
Table 9-5 listed the statistic characteristics of indicators in the presence of maintenance 
actions. It was found that the PDI is most sensitive indicator to the maintenance action, 
followed by IRI and PSI. The rut depth seems the most insensitive indicator. As the most 
collected data (annually for interstates, and biannually for state routes), in this report, IRI 
was employed to identify the maintenance action. 

 
Table 9- 5 Statistic characteristics of indicators in the presence of maintenance actions 

 

 
Indicators 

Means 
(Interstates, 

State 
routes) 

Standard 
Deviation 

(Interstates, 
State 

routes) 

Median 
(Interstates, 

State 
routes) 

ΔIRI_LT -7.205,-
21.127 

21.985,24.542 -3.754,-
22.461 

ΔIRI_RT -7.334,-
24.837 

24.627,28.529 -5.15,-24.412 

ΔRut_LT -0.002,-
0.025 

0.076,0.078 -0.0071, -
0.0202 

ΔRut_RT -0.009,-
0.024 

0.057,0.080 -0.013,-0.017 

ΔPSI 0.133,0.37
5 

0.353,0.381 0.07,0.412 

ΔPDI 0.85 1.06 0.84 

 
Figure 9-11 illustrated the change of IRI over time from county 3 (SR 191 County 3 from 
21.6mile to 21.7mile, P direction). There is a jump of IRI in 2009 from 168 in./mi. in 



average to  57 in./mi.. This change probably caused by the maintenance action. Therefore, 
the IRI before 2009 will be excluded when the performance curve is constructed. If the 
performance curve is determined by including the data before 2009, the general trend of 
performance curve will be considered as abnormal. 

 

 

Figure 9- 15 Change of IRI over time 

Figure 9-12 illustrated two performance curves with and without data before 2009. It can 
be seen that with data before 2009, the general trend of performance curve seems abnormal. 
The slope of the linear equation is positive, which means PSI increases with time. However, 
if the data before 2009 were excluded, the general trend of performance curve illustrated a 
normal change of PSI with R2 (greater than 0.9) higher than the form linear equation (less 
than 0.6). 

 
 

 
Figure 9- 16 Performance curve (with and without data before 2009) 

Figure 9-13 illustrated a typical change of IRI over time with IRI slightly drop in 2009. 
Since no maintenance records was found within this segment from 2008 to 2010. It cannot 



conclude that the maintenance action is responsible for drop in IRI. The reason could be 
either maintenance action or measurement error. 

Figure 9-14 illustrated the performance curves with and without data before 2009. It can be 
seen that the general trend of two performance curves are similar. The slope of one with 
three years is slightly higher than that with five years, which means the deterioration rate of 
former is slightly higher than the later. Therefore, the predicated PSI value determined by 
the former equation will higher than the later. This means the performance curve with five 
years’ data leads to a conservative result. 

 

 
Figure 9- 17 Change of IRI over time (slightly drop in IRI in 2009) 

 

Figure 9- 18 Performance curve (slightly drop in IRI in 2009) 



Figure 9-15 illustrated the change of IRI over time. It can be seen from Figure 6 that there 
seems to be an abnormal change of IRI in 2010 on the left side. Figure 9-16 illustrated the 
performance curves. Results from linear equation indicated that the general trend of 
performance curves seem normal. Although the R-square of performance curve with less 
data is higher than that with more data, the performance curve determined by five years’ 
data seems more appropriate since more data were included. 

 

Figure 9- 19 Change of IRI over time (with abnormal change of IRI on one side) 
 
 

Figure 9- 20 Performance curve (with abnormal change of IRI on one side) 



9.3.2 Determination of the performance curve 
 

Linear equation is employed to describe the performance curve. There are many other 
models can be used to describe the change of pavement performance over time. In this 
report, the linear model was employed due to the following reasons: 

1) The form of linear model is relative simple. The equations of determining the 
parameters of linear model by Least-square method are simple and can be 
programed easily. 

2) The slope of linear model can be used to indicate the general trend of 
performance change. Therefore, the abnormal changes in performance can be 
easily identified. 

3) The linear model is capable of predicating the short-term change of performance 
curve. There is no significant difference in short-term prediction of performance 
between linear model and other models. 

 
Pavement Serviceability Index, PSI, was used to construct the performance model. PSI is 
calculated from IRI, which is calculated from the longitudinal profile. As exponential 
function is employed, the variability of PSI significantly decreases. As an index to describe 
the riding comfort, PSI is used for M&R analysis by decision tree. 

 
9.3.3 Framework of determining performance curve 

 
The performance curve is determined in accordance with the following steps. 

 
1) Determining the road unit and route ID for each unit. 
 
The road unit is the minimum analysis section based on which the performance curve was 
established. The road unit is determined based on the analysis demand. With larger road 
unit, the reliability will decrease. However, it is hard to make maintenance plan if the road 
unit is too small. In HPMA, the road unit is one-tenth of a mile, which is the minimum unit 
for analysis. 
Obviously, the lower road unit may lead to better prediction results comparing with the 
larger ones. In this report, the road unit to be analyzed is one-tenth of a mile. Lager road 
unit can also be used depending on the analysis demand. 
 
To identify each road unit, the following ID codes were employed: HR_ROUTCOD; 
HR_COUNTY; HR_CNTYSQ; HR_ROUTTYP; HR_ROUTNUM; HR_ROUTAUX; 
HR_DIRECTN; HR_BEGMILE. 
 

 



2) Time series of collected performance data. 
 

The performance matrixes were established in terms of the following pavement condition 
indices: IRI, rut depth, and PSI by collecting year. 

 

Table 9- 6 Matrix of PSI 
 

ID 
code 

Y
ea
r1 

Y
ea
r2 

… Y
ea
ri 

… Y
ea
rn 

131I40M0       
131I40M0.1       
131I40M0.2       
131I40M0.3       

…       

In Table 9-6, the ID code for each road unit represents the minimum road segment within 
the route. The ID code is named as follows. The ID number is the unique code for 
identifying the road unit. 

HR_ROUTCOD  
 
 
 

131I40 
M0.1 

HR_COUNTY 
HR_CNTYSQ 

HR_ROUTTYP 
HR_ROUTNUM 
HR_ROUTAUX 
HR_DIRECTN 
HR_BEGMILE 

 
3) Identify the maintenance action and modify the PSI matrix. 

 
The maintenance actions are identified by change of IRI between two adjacent years. The 
changes of IRI over year from each side and the average changes of IRI over year are 
determined as the follows 

 
ΔHR_IRI_RT= (HR_IRI_RT)i- (HR_IRI_RT)i-1  

ΔHR_IRI_LT= (HR_IRI_LT)i- (HR_IRI_LT)i-1  

ΔHR_IRI= (ΔHR_IRI_RT+ ΔHR_IRI_LT)/2 
 

The matrix of ΔIRI is constructed as shown in Table 9-7. The latest ΔHR_IRIi-1,i with 
values less than -15 in./mi. is first identified. The initial year which is used to construct 
performance model is the later year of ΔHR_IRIi-1,i. If no value of ΔHR_IRI is found to be 
less than -15 in./mi., all data will be included to construct performance model. 

 



Table 9- 7 Matrix of ΔIRI 
 

ID ΔHR_I
RI1-2 

ΔHR_
IRI2-3 

… ΔHR_IR
In-1-n 

1     
2     
3     
4     
     

4) Determining the parameters for the performance model utilizing least-square 
method. 

 
After pavement condition data and the initial year being screened out, the least-squared 
method is employed to estimate the parameters of performance model. 

 
The formation of performance model is written as Eq. 9-1. 

 
PSI=A*Year+B (Eq. 9-1) 

 
Where, A, B is the coefficient of performance model, indicating the slope (A) and intercept 
(B). Independent variable (Year) starts with the initial year in the order of Year=1, 2,…,n. 
PSI starts with the initial PSI value from the initial year. 

 
In the program, the coefficient of A and B is determined as the following equations: 

 

 

 

Where: X represents for Year; Y represents for PSI; n represents for the number of samples 
used in constructing the model. 

 
R square is used to indicate the Goodness-of-fitting. It can be calculated by the following 
equation. 

 

 
Where: X, Y,n are the same as above.; 

 



The flowchart of determining the performance curve was illustrated as below and Java 
based code was also developed. The program is developed on the platform of Java. It 
consists of .exe file (gawk.exe) and AWK file (PSI.awk). The program runs under cmd.exe. 
The command for the program is: 

 
Gawk –F, –f PSI.awk filename.csv 

 
The file containing original data should first transfer to the .CSV file format as illustrated 
in Figure 9-17. The output interface of results is illustrated in Figure 9-19. 

 
 

 

Figure 9- 21 Original pavement condition data The input interface of cmd command is 
illustrated in Figure 9-18. 

 

 
Figure 9- 22 Interface of input command (cmd.exe) 



 

 

Figure 9- 23 Output interface 



 

Start 

Segment ID: i 
Number of years used: NumYear 

Each year (j): HR_IRI_RT; 
HR_IRI_LT; HR_RUT_RT 
HR_RUT_LT; HR_PSI 

Time series: ΔHR_IRIj-1,j 

Initializing year: j=2 

ΔIRIj-1,j <-15 
No 

Next Year: j=j+1 

Next year: j+1 

Initial year: INI= j 

No 
j=NumYear 

PSI series: PSIINI, PSIINI+1,… 

PSI=a*Year+b, R2 

Next segment: i+1 

End 

ΔIRI_RTj-1,j= (HR_IRI_RT)j- (HR_IRI_RT)j-1 

ΔIRI_LTj-1,j= (HR_IRI_LT)j- (HR_IRI_LT)j-1 

ΔIRIj-1,j= (ΔIRI_RTj-1,j+ ΔIRI_LTj-1,j)/2 



10. Equipment verification on control site 
 

10.1 Test verification site 
The test equipment should be validated before data production and needs to be periodically 
checked during the data collection. Control sites are used to perform equipment 
verification. In Tennessee, there are 16 control sites for the purpose of equipment 
validation. Details were listed in Table 10-1. Most of the control sites are 1 mile length. The 
sections are free of intersections and are relative flat. The traffic is low at these sites. 
Therefore, the test vehicle can easily keep the cursing speed. The influence of change of 
speed on repeatability of collected data can be decreased. 

10.2 Comparison of historical data 
Historical data in different test sites over Tennessee were collected to make comparisons of 
IRI from different testing equipment. The test sites were listed in Table 2. The length of 
test sites was 1 mile except for site 1-5 with 0.5 mile-length. Each site was divided into 10 
sub-segments with 0.1 mile length. Site 1-5 was divided into 5 sub-segments. The IRI for 
each sub-segment was calculated. The mean value, standard deviation, and coefficient of 
variance for each site were calculated and listed in Table 3. The IRI data provided by the 
contractor were collected from the HPMA. Since the data form TDOT and contractor were 
collected at different time, there might be some errors on the results due to the change of 
weather or pavement surface characteristics. Comparisons were made herein to estimate the 
possible bias of two datasets. It is assumed that there is no significant change of IRI over 
time within a year. 

Table 10- 1 Test sites for evaluating the data repeatability 
 

Site No. County Route 
No. Direction Begin End Length Test Date 

(TDOT) 
Test Date 

(contractor) 
1-1 Jefferson 34 M 8.155 7.155 1 9/18/2014 11/6/2014 
1-2 Sullivan 34 P 0.29 1.29 1 09/16/2014 10/7/2014 
1-4 Roane 58 P 14.95 15.95 1 09/18/2014 11/15/2014 
1-5 Knox 1 P 35.09 35.59 0.5 9/17/2014 11/18/2014 
2-1 Hamilton 29 P 13.69 14.69 1 7/11/2014 10/26/2014 
2-2 Rhea 29 M 25.55 24.55 1 07/11/2014 11/10/2014 
2-4 Putnam 111 M 6.69 5.69 1 08/20/2014 11/3/2014 
3-3 Rutherford 10 P 3.67 4.67 1 08/27/2014 10/18/2014 
3-4 Montgomery 76 P 1 2 1 10/16/2014 10/19/2014 
4-1 Madison 20 M 4 3 1 4/24/2014 9/24/2014 
4-2 Henderson 20 P 18.6 19.6 1 12/9/2014 9/25/2014 
4-3 Obion 3 M 29 28 1 11/10/2014 9/20/2014 



According to Table 10-2, the mean value of IRI ranged from 25.8 to 97.0 with the highest 
standard deviation of 5.3, which means all the test sites were in good or fair condition. Note 
that IRI of 90 equals to the PSI of 3.0. In another word, these test sites are suitable to 
perform tests for equipment verification. 

 
Table 10- 2 Statistic results of IRI 

 

 
 

Site No. 

IRI- left IRI-right 

Mean 
value, 
in/mi 

Standard 
deviation,i
n/mi 

Coefficient    
of 

variance,% 

Mean value, 
in/mi 

Standard 
deviation,in/mi 

Coefficient 
of 

variance,% 

1-1 49.0 0.7 1.43 49.4 1.3 2.63 

1-2 65.2 0.4 0.61 73.6 1.8 2.45 

1-4 40.8 0.4 0.98 51.6 1.7 3.29 

1-5 73.2 3.6 4.92 73.6 3.2 4.35 

2-1 38.0 0.7 1.84 39.4 0.9 2.28 

2-2 71.2 0.4 0.56 76.2 0.4 0.52 

2-4 25.8 0.4 1.55 32.0 0.0 0.00 

3-2 48.7 2.5 5.13 47.6 5.3 11.13 

3-3 51.8 1.6 3.09 52.2 0.4 0.77 

3-4 52.0 0.0 0.00 50.4 0.5 0.99 

4-1 41.8 0.8 1.91 53.2 0.8 1.50 

4-2 95.4 0.5 0.52 97.0 0.7 0.72 

4-3 39.0 1.2 3.08 40.8 0.4 0.98 

4-4 44.2 0.8 1.81 53.4 0.5 0.94 

Figure 10-1 illustrated the comparison of two datasets (IRI) obtained from two different 
testing equipment (TDOT and contractor) in 2014. The closer the points were to the equity 
line, the better agreement would be on the two datasets. Although the data were not 
collected at the same date, the scatters were close to the equity line. This means the results 
from two different testing equipment are inconsistent with each other. 



 

Figure 10- 1 Relationship of IRI between collection devices (segment) 

Figure 10-2 illustrated the comparisons of IRI value at each one-tenth of a mile. Generally, 
the scatters were close to the equity line. It can also be seen that with higher IRI value, the 
scatters tend to be away from the equity line. The results in Figure 8 indicated that the 
contractor seemed to overestimate IRI value comparing with TDOT at higher IRI value. It 
should be noted that the test date for the contractor was generally later than TDOT. The 
deterioration of surface may also contribute to this result. Although the IRI of TDOT and 
contractor were not collected at same date, fair good consistency was observed by 
comparing the two datasets. 

 

Figure 10- 2 Relationship of IRI between collection devices (0.1 mile sub-segment) 

Matched pairs test was performed to evaluate whether the two datasets were from the same 
population. Figure 9 illustrated the test results. It can be seen that the upper and lower 95% 



ranges from 0.09 to 5.51. This means contractor overestimated the IRI data comparing with 
the TDOT. Meanwhile, the two datasets were not from the same population statistically. 

 
 

 

    
 

 

    
 

 

  
 

 

Figure 10- 3 Results of matched pairs test 

10.3 Field verification test 
 

The two validation tests were conducted. One was at control site 3-3 in Rutherford County 
on March 27th, 2015, the other was at control site 1-1 in Knox County on September 30th, 
2015. The weather was sunny. Figure 10-1 illustrated the test equipment that TDOT and 
the contractor used. 

 
10.3.1 Control site 3-3 

 
In control site 3-3, each test vehicles ran the test section 10 times. The longitudinal profile 
of pavement surface was collected by laser profiler. The contractor ran the first 0.1 mile to 
evaluate the repeatability of IRI. The rest of section was used to check the accuracy of DMI. 



 

Table 10-2 and Table 10-3 listed the result of T-test with the assumption that the samples 
have equal variance and unequal variance. T-test is performed by assuming that the two 
samples have the same means value. With p=0.05, the Ho hypothesis is rejected which 
means the mean value of two samples were different. 

 

(a) TDOT test equipment (b) Contractor Equipment 
 

Figure 10- 4 Test Equipment 

Table 10- 3 T-Test: Two-Sample Assuming Equal Variances 
 

  



 

Table 10- 4 T-Test: Two-Sample Assuming Unequal Variances 

 

 
The results from Table 10-2 and Table 10-3indicated there seems no significant difference 
of IRI between two test devices, statistically. It should be noted that p-value in right wheel 
path (0.06) was slightly higher than the threshold (0.05). This means the difference of IRI 
in right path between two devices may be potentially significant. 

 
Figure 10-5 and Figure 10-6 illustrate the longitudinal profile collected by two devices. It 
was found that there is no exact the same elevation curve between two runs for the same 
collection device. However, the general change of elevation curve appeared similar. As for 
different collection device, the change of elevation curve appeared different. 

 
 

(a)-Right wheel path (b)-Left wheel path 

 Figure 10-5 Longitudinal Profile-TDOT’s equipment  



 

(a)-Right wheel path (b)-Left wheel path  

Figure 10- 6 Longitudinal Profile-Contractor’s equipment 

Figure 10-7 and Figure 10-8 indicated that after processed by High-pass Butterworth filter 
and offsetting a certain distance, the adjusted elevation curves matched well with each 
other. Table 10-7 compared the difference of IRI with and without Butterworth high pass 
filter. There was almost no change in IRI if Butterworth high pass filter was applied with 
long cutoff wavelength greater than 120 foot. 

 

 
Figure 10- 7 Comparison of processed elevation on left wheel path with Butterworth High-pass 

filter applied (long cutoff wavelength120 ft.) and maximum offset 18 ft. 



 

 
 

Figure 10- 8 Comparison of processed elevation on right wheel path with Butterworth 
High-pass filter applied (long cutoff wavelength 120 ft.) and maximum offset 18 ft. 

 

Table 10- 5 Influence of filter technique on IRI calculation 
 

 
Position 

IRI from original 
elevation 

 
inch/mile 

IRI from processed 
elevation 
inch/mile 

TDOT left 74.39 74.07 

Contractor left 69.58 68.98 

TDOT Right 59.44 59.27 

Contractor Right 55.65 55.38 

 
Figure 10-6 compared elevation PSD of two representative elevation data. It was found that 
although the elevation data were quite different from two collection devices, the elevation 
PSD curves were close. Previous studies indicated there is fairly good relationship between 
IRI value and PSD. Therefore, the closeness of PSD curves supported the conclusion that 
there was no significant difference between two collection devices. 



 

 
(a) Left 

 

(b) Right 
 

Figure 10- 9 Comparison of Elevation PSD from two profile data 

10.3.2 Control site 1-1 
 

Control site 1-1 is located on Rutledge Pike, Knox County. The total length of the section is 
0.5 mile. The two reflective tapes are embedded permanently in the pavement structure 
indicating the start point and end point of the test site. The validation test was performed by 
each test vehicles running 10 times.



 
 

Figure 10- 10 Map of Control site 1-1 
 

 
(a)-Right wheel path (b)-Left wheel path  

Figure 10- 11 Longitudinal Profile-TDOT’s equipment 



 
 

(a)-Right wheel path (b)-Left wheel path 
 

Figure 10- 12 Longitudinal Profile-contractor’s equipment 

T-test was also employed to estimate whether there is a statistic difference between two 
datasets. Table 10-4 and Table 10-5 listed the result of T-test with the assumption that the 
samples have equal variance and unequal variance. 

 
Table 10- 6 T-Test: Two-Sample Assuming Equal Variances 

 

 
Table 10- 7 T-Test: Two-Sample Assuming Unequal Variances 



 
 

As listed in Table 10-3 and Table 10-4, with p value less than 0.05, the Ho hypothesis is 
rejected which indicates the mean value of two samples were significantly different. 

 
The relative error can be expressed as Equation 10-1. 

 
  (Eq. 10-1) 

Where, IRIc is the mean value of IRI from contractor’s equipment; IRIAG is the mean value 
of IRI from agency’s equipment. Table 10-4 lists the comparison of two collection systems. 
Table 10-4 indicates there is a significant difference between the two collection devices. 
For each one- tenth of a mile, evident difference in IRI was found. The lowest relative error 
was 5.70%, whereas the highest relative error was greater than 50%. 

 
Table 10- 8 Comparison of two collection systems 

 
Section ID Site 1-1 

Milestone 

Left Right 

TDOT 
in./mi. 

Contractor 
in./mi. 

Error 
% 

TDOT 
in./mi. 

Contractor 
in./mi. 

Error 
% 

0-0.1 63.61 85.52 34.44 58.00 69.36 19.58 

0.1-
0.2 

56.05 83.47 48.92 66.72 82.00 22.91 

0.2-
0.3 

64.95 77.81 19.80 74.37 79.55 6.97 

0.3-
0.4 

61.09 64.57 5.70 68.38 84.98 24.28 

0.4-
0.5 

48.55 73.72 51.84 56.01 69.21 23.58 

Total 58.93 77.01 30.68 64.75 76.95 18.84 



Figure 10-13 illustrated the comparison of elevation PSD from two collection devices. Note 
that the raw elevation was filtered by low pass Butterworth filter to excluded wavelength 
length that less than 3 foot and greater than 120 foot. It was found that there was significant 
difference of PSD curves at wavelength from 3 foot to 10 foot in both sides. Therefore, the 
source of errors in IRI could be due to the measurement errors within this range. 

 

 
 

(a) Left 
 
 

 

(b) Right 
 

Figure 10- 13 Comparison of PSD from two collection devices 

Figure 10-14 illustrates the influence of short cutoff wavelength on the difference of IRI between 
two collection devices. The IRI values were calculated by excluding the wave features that were 
less than cutoff wavelength. Butterworth filter was employed to filter out the short waves. As the 
cutoff short wavelength increased, the difference of IRI between two collection devices decreased. 
This indicated the errors of IRI between two collection devices decreased. With short waves less 
than 10 foot excluded, the IRI values were fair close. The results from Figure 10-14 were in 
agreement with the findings from Figure 10-14. 



 
(a) Left (b) Right 

 
Figure 10- 14 Comparison of influence of cutoff short wavelength on IRI 

10.4 Influence of error factors on time series 
 

There are two basic change of IRI over time: 1) The IRI along both paths increased with 
time or the IRI along one wheel paths increased with time while the IRI on the other path 
remain stable; 2) Change of IRI over time generally remains stable. The above two 
scenarios are considered as normal tendency of IRI over time when prediction analyses are 
conducted. There are some abnormal IRI trends that were identified as below in accordance 
with LTPP data. 

• The IRI of both wheel paths, or one of the wheel path, for a given date was 
considerably higher or lower than the IRI obtained before and after the date. 

• The variations of IRI for both wheel paths at different dates were high. 
 

The factors that caused the above abnormal IRI trends can be summarized as below. 
 

10.4.1 Variation in wheel track 
 

Figure 10-15 illustrated that the value of IRI in right wheel path at pavement age of 20 
years was considerably higher than other profile dates, whereas the change of IRI in left 
wheel path remained stable. The elevations for the first three visit at section 19-1044 were 
illustrated in Figure 10-16. Butterworth filter was applied to filter the long wavelength 
greater than 125.0 foot. Field distress survey indicated that transverse cracks were observed. 
The location of transverse cracks were identified as spikes on elevation curves. One may 
find that there were some difference in elevation data near the spikes in terms of 
wavelength and amplitude. This means there were some errors when the transverse cracks 
were being collected. 

 
Figure 10-17 illustrated the elevation PSD on right wheel path for the first three profile 
dates. Results indicated that main difference of PSD in frequency domain between the 



second profile date and other profile dates were at wavelength less below 10 foot. The 
variation in wheel track may be responsible for the abnormal change of IRI over time. One 
of the reasons pointed by LTPP report was that the driver appeared to have followed a 
wheel path closer to the shoulder during that year. And in this wheel track, the cracks of 
transverse cracks tended to be wider. 

 
 

Figure 10- 15 Inconsistent IRI in one wheel path at section 19-1044 
 
 

Figure 10- 16 Elevation for right wheel path for the first three profile dates (Section 
191044) 

 



 
Figure 10- 17 Elevation PSD curve (Section 191044) 

Figure 10-18 illustrated the change of IRI over time for section 1-0101. It seems that the 
IRI obtained from the 10th and the 11th visit deviated from the trend of IRI over time. By 
the IRI from the two profile dates being excluded, the R-square of regression curve 
increased from 0.32 to 0.78. Note that this section was used as control section in LTPP and 
there is no maintenance records found in the section for the entire monitoring period. 

 
 

(a) Original data (b) Abnormal data excluded  

Figure 10- 18 Change of IRI on right wheel path over time (Section 01-0101) 

Figure 10-19 illustrated the elevations at four visits (the 9th to 12th visit) by applying 
Butterworth filter to filter the long wavelength greater than 125.0 foot. It was found that the 
general trend of pavement profiles from each profile dates were similar. There were also 
some spikes in the elevation data for the 10th and 11th visit, which might be the indication 
of crack or other surface features. The elevation PSD curve illustrated in Figure 10-20 
indicated that there were some difference in wavelength ranging from the minimum value 
to 60 foot between each visit. This means the abnormal change of IRI over time may be 
caused by the elevation profile with wavelength range less than 60 foot. One of the possible 
reason is that the operators profiled the elevation at different wheel tracks for each visit. 
The spikes in the elevation also indicated that the surface distresses may also be 
responsible for this abnormal change. As indicated by the distress data, there were wheel-



path cracks on the profile section. 
 

 
 

Figure 10- 19 Elevations for the right wheel path on the 9th to the 12th visits (Section 1-0101) 
 

Figure 10- 20 PSD for right wheel path on the 9th to the 12th visits (Section 1-0101) 
 

10.4.2 Equipment-related problem 
 

Figure 10-21 illustrated the typical abnormal change of IRI over time. The IRI were 
collected from LTPP section GPS-261010. It was found that IRI on both wheel paths for 
the second profile date were significant higher comparing with the other dates. Figure 10-16 
illustrated the elevation PSD for three visits. In the figure, the abnormal change of IRI was 
found at 26101003. Evident difference was found between the second visit (26101003) and 
other two visits. The main difference in wavelength ranged from 2.6 ft./cycle to 10.2 
ft./cycle. Figure 10-19 illustrated the elevation after applying Butterworth filter with 



wavelength greater than 125.0 foot excluded. By reviewing the elevation data in Figure 10-
22, one can find that the changes of elevation for three profile dates were almost identical 
at long wavelength ranges. However, at short wavelength ranges, the amplitudes of 
elevation for the second visit were different from other visits. This error was attributed to 
the improperly working condition of the accelerometer of the device according to LTPP 
report. 

Figure 10- 21 Inconsistent IRI trends in both wheel paths at section 26-1010 
 

 

Figure 10- 22 Elevation for left wheel path for the first three profile dates (Section 
261010) 



Figure 10-23 illustrated the elevation PSD for the three profile dates. The main difference 
of PSD was at wavelength range below 10 foot. PSD curves for three profile dates were 
almost overlapped at the wavelength ranges from 20 foot and above. Since the errors in 
profile data were attributed to accelerometer, the PSD curve may indicate that the errors in 
PSD at short wavelengths below 10 foot may be associated with the improper working 
condition of accelerometer. 

 

 

Figure 10- 23 Comparison of elevation PSD (Section 261010) 

10.4.3 Pavement resurfacing 
 

The surface profile will be significantly changed after the maintenance activities are 
applied. The investigated LTPP section was resurfaced between the two profile dates. 
Figure 10-24 illustrated the comparison of elevation before and after the maintenance 
activities were applied. The surface profile appeared to be smooth after maintenance 
activities. Figure 10-25 illustrated the comparison of PSD. Comparing with PSD curves 
above (Figure 10-17, Figure 10-20 and Figure 10-23), one may find that the PSD curves 
were quite different at all wavelength ranges. This means pavement resurfacing will 
completely change the pavement characteristics rather than partially change surface 
characteristics at some wavelengths or wavenumbers. 

 

(a) Left wheel path (b) Right wheel path 
 

Figure 10- 24 Comparison of pavement profile after maintenance action being applied 
(Section 37-2819) 



 

 
 

(a) Left wheel path 
 

 
(b) Right wheel path 

 
Figure 10- 25 Comparison of PSD after maintenance action being applied (Section 37-2819) 



11. Summary and Conclusion 
 

This study investigated the quality of pavement condition data in current PMS in 
Tennessee. A nationwide survey was conducted to collect the current practices on 
quality management on pavement condition data. The general data quality over year in 
Highway Pavement Management Administration (HPMA) system in Tennessee was 
evaluated. Factors influencing data quality are identified by reviewing and analyzing 
PMS data. As International Roughness Index (IRI) is the most important indicator to 
PMS, field validation tests between different collection devices were conducted to 
evaluate the potential variability of IRI. Based on the result and findings above, a 
guideline to implement data quality management was established. Based on the 
analyses, following conclusions are drawn: 

1. A nationwide online survey was conducted to collect the current practices on 
data quality management of state DOTs. The results from questionnaire 
indicated field validation/calibration of testing equipment is considered as the 
most selected steps before data collection. Individual distresses are recognized as 
the most common way in evaluating the confidence of data collection. The 
engineer ranked the following factors in order of the amount impact on quality 
of pavement condition data: device calibration; personnel training; sensor 
accuracy; accuracy of internal measurement; system that is used to process the 
raw data; weather and testing conditions; and speed of testing vehicles. 

2. The quality of pavement condition data are classified into basic quality and 
analytical quality. By evaluating the current PMS data, the measurers and 
criteria of data quality were determined. The overall quality of pavement 
condition data over years were evaluated based on these measurers and criteria. 

3. Data variability and its influence on maintenance planning were investigated. 
The analyses indicated that: 

1) The roughness data, including International Roughness Index and Rut 
depth, collected from two wheel path were not statistically identical. For 
IRI value, there is a linear relationship between two wheel paths with 
high R-square, whereas rut depths from two wheel paths were not 
linearly correlated. 

2) For distress data, the accuracy of distress extent at low severity level had 
little influence on the calculation of PDI while the accuracy distress 
extent at moderate and high severity levels significantly influenced the 
accuracy of PDI. The accuracy of distresses severity at moderate level 
influenced the accuracy of PDI significantly. 

4. The analyses of influence of data variability on maintenance planning indicated 
that the variability of IRI and distress severity level was the dominant influence 



factors for maintenance planning. The variability of distress extent had slight 



influence on maintenance planning. There is no significant influence of 
variability of rut depth on the maintenance planning. 

5. The analysis of data variability also indicated that the influence of data 
variability on maintenance planning may vary in terms of current pavement 
conditions, how the pavement condition indices are defined, and how the 
maintenance and rehabilitation analyses are performed. In response to this issue, 
a dynamic framework towards data quality analysis at network level was 
established. 

6. By investigating pre- and post-maintenance pavement condition data, the 
changes of pavement condition data due to maintenance activities are identified. 
The linear model was used to construct the performance curve and determine the 
analytical quality of pavement condition data. A Java based program was also 
developed to construct the performance curve. 

7. Field validation tests were performed to evaluate the difference of IRI from 
agency’s devices and contractor’s device. Statistical analyses indicated there is a 
possibility that the IRI obtained from different devices could be significant 
different. Further analyses were also performed to identify the revolution pattern 
of IRI over time. It is recommended that lateral comparisons between tests 
devices be performed to improve the reliability of collected data. 

8. The results and findings were summarized to establish a practical procedure for 
quality management of PMS data which aims to assist TDOT to improve the 
quality control and quality assurance in data collection. 
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