# **Determining Concrete Chloride Permeability**

# **Rapidly and Effectively**

**Final Report** 

Submitted to the Tennessee Department of Transportation

Materials and Tests Division

Project #: <u>RES 2013-41</u>

L. K. Crouch, Ph.D., P.E. Daniel Badoe, Ph.D. Sarah Dillon, Ph.D., E.I. Aaron Crowley, Ph.D., E.I. James Locum, M.S., E.I. Blakeslee Eagan, M.S., E.I. Caleb Smith, M.S., E.I. Ben Mohr, Ph.D., P.E.

Department of Civil and Environmental Engineering Tennessee Technological University

# **Technical Report Documentation Page**

| 1. Report No.                                                                | 2. Government Accession No.           | 3. Recipient's Catalog No.            |  |
|------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|--|
| RES 2013-41                                                                  |                                       |                                       |  |
| 4. Title and Subtitle                                                        | 5. Report Date                        |                                       |  |
| Determining Concrete Chloride Permeability Rapidly and Effectively           |                                       | July 03, 2018                         |  |
|                                                                              |                                       | 6. Performing Organization Code       |  |
| 7. Author[s] L. K. Crouch, Daniel Bac<br>James Locum, Blakeslee Eagan, Caleb | 8. Performing Organization Report No. |                                       |  |
| 9. Performing Organization Name and Address                                  |                                       | 10. Work Unit No. [TRAIS]             |  |
| Center for Energy Systems Research                                           |                                       |                                       |  |
| Box 5032. Tennessee Technological University                                 |                                       | 11. Contract or Grant No.             |  |
| Cookeville, TN 38505-0001                                                    |                                       | 019B268 (FHWA Project No.)            |  |
| 12. Sponsoring Agency Name and Address                                       |                                       | 13. Type of Report and Period Covered |  |
| Materials and Tests Division                                                 |                                       | August 1, 2013 to July 31, 2018       |  |
| Tennessee Department of Transportation                                       |                                       | 14. Sponsoring Agency Code            |  |
| 6601 Centennial Blvd. Nashville, TN 37243-0360                               |                                       |                                       |  |
| 15. Supplementary Notes                                                      |                                       |                                       |  |
|                                                                              |                                       |                                       |  |

16. Abstract

A study was conducted to determine if chloride permeability could be determined more quickly and efficiently. Two mixtures were selected by the Tennessee Department of Transportation (TDOT) Materials and Tests (M&T) Division: a TDOT Class D mixture with 20% Class F fly ash and an experimental mixture containing 35% Grade 120 slag and 15% Class F fly ash.

Five validation batches of each mixture were produced. The plastic and hardened properties of all validation batches of both mixtures met TDOT 604.03 Class D requirements. Subsequently, twenty batches of each mixture were produced for chloride permeability comparison. Rapid chloride permeability ((RCP) AASHTO T 277) was measured after 28 days of accelerated curing and also after 56 and 91 days of normal curing. Surface resistivity ((SR) AASHTO TP 95) was measured after 28 days of accelerated curing and also after 56 and 91 days of normal curing. Additional data from other TTU studies was also used in the correlations and predictions. The correlation between SR and RCP was significantly different from the correlation based on AASHTO categories, but, on average, differed from AASHTO by less than 4%. Correlations between earlier and later age values of both SR and RCP were very strong ( $R^2 > 0.9$ ) for both accelerated and normal moist curing.

The authors recommend that TDOT M&T:

- 1. Use SR instead of RCP for primarily logistical reasons.
- 2. Use normal curing rather than accelerated curing for primarily logistical reasons.
- 3. Specify minimum SR of 24 kilohm-cm after 28-days of normal curing.
- 4. Continue accumulating results from different Class D and experimental PCC mixtures.

| 17. Key Words<br>resistance-chloride penetration<br>concrete<br>fly ash<br>slag<br>compressive strength |                                     | 18. Distribution Sta | atement                 |                           |
|---------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------|-------------------------|---------------------------|
| absorption                                                                                              |                                     |                      |                         |                           |
| 19. Security Classif. [of this report]<br>Unclassified                                                  | 20. Security Classi<br>Unclassified | f. [of this page]    | 21. No. of Pages<br>152 | 22. Price<br>\$234,238.36 |

# DISCLAIMER

This research was funded through the State Planning and Research (SPR) Program by the Tennessee Department of Transportation and the Federal Highway Administration under RES2013-41: *Determining Concrete Chloride Permeability Rapidly and Effectively*.

This document is disseminated under the sponsorship of the Tennessee Department of Transportation and the United States Department of Transportation in the interest of information exchange. The State of Tennessee and the United States Government assume no liability of its contents or use thereof.

The contents of this report reflect the views of the author(s) who is(are) solely responsible for the facts and accuracy of the material presented. The contents do not necessarily reflect the official views of the Tennessee Department of Transportation or the United States Department of Transportation.

#### ACKNOWLEDGEMENTS

We gratefully acknowledge the financial support provided by the Tennessee Department of Transportation (TDOT) and the Federal Highway Administration (FHWA). We sincerely appreciate the support and assistance provided by Tennessee Concrete Association (TCA), the Tennessee Technological University (TTU) Center for Energy Systems Research, and the TTU Department of Civil and Environmental Engineering. We also appreciate the materials donated by Frank Lennox of Buzzi-Unicem, Megan Dangel of LaFarge, Clark Gates and Mark Casey of SEFA Group, and Denny Lind of BASF. Equipment fabrication, repair and maintenance, and supply procurement provided by Mark Davis and Perry Melton were essential to the project and greatly appreciated. The authors are grateful for computer assistance and financial management provided by Tony Greenway, Etter Staggs, Linda Lee, and Robert Craven of the TTU Center for Energy Systems Research. Thanks to current and former TTU students Jacob Brooks, Traci Cooper, Emily Reed, and Lee Rogers for their help on the research.

# **TABLE OF CONTENTS**

| LIST OF TABLES ix                             |
|-----------------------------------------------|
| LIST OF FIGURES xii                           |
| CHAPTER 1 : INTRODUCTION 1                    |
| Benefits to TDOT                              |
| Purpose of the Proposed Research              |
| CHAPTER 2 : LITERATURE REVIEW                 |
| CHAPTER 3 : MATERIALS 15                      |
| CHAPTER 4 : PROCEDURE 17                      |
| Overview17                                    |
| Mixtures Chosen by TDOT18                     |
| Validation Batches                            |
| SR-RCP Batches of the TDOT Mixtures           |
| Casting                                       |
| Normally Cured Specimens                      |
| Specimens Cured in an Accelerated Manner      |
| Other TTU RCP-SR Data Sets                    |
| TTU Slag Study                                |
| TTU Aggregate Variable Study                  |
| TTU High Permeability Class D Mixture Study24 |
| TTU Aborted MS Thesis                         |
| Other TTU SR Only Data Sets                   |

| CHAPTER 5 : RESULTS                                         |    |
|-------------------------------------------------------------|----|
| Validation Batch Results                                    |    |
| Validation Batch Data Quality                               |    |
| Plastic Properties                                          |    |
| Hardened Properties                                         |    |
| SR-RCP Batch Results                                        |    |
| SR-RCP Batch Data Quality                                   |    |
| Other SR and RCP Results                                    |    |
| Other SR and RCP Data Quality                               |    |
| Other SR Only Results                                       | 40 |
| Other SR Only Data Quality                                  | 40 |
| Previous TDOT RCP Results                                   |    |
| CHAPTER 6 : ANALYSIS OF RESULTS                             |    |
| TDOT Specification Compliance                               |    |
| Comparison with Previous TDOT Project RCP Results           |    |
| SR-RCP Correlations                                         | 45 |
| Statistical Analysis of SR-RCP Correlations                 |    |
| RCP Predictions                                             |    |
| Statistical Comparison of Predicted and Measured RCP Values | 60 |
| SR Predictions                                              | 61 |
| Statistical Comparison of Predicted and Measured SR Values  | 66 |
| Choosing a Test Method                                      | 68 |
| Correlations                                                | 68 |

| Variability                                                             |
|-------------------------------------------------------------------------|
| Logistics                                                               |
| Summary                                                                 |
| Choosing a Curing Regime70                                              |
| Investigating the Ambiguity of Accelerated Curing                       |
| Value as a Predictor of Later Age Results                               |
| Logistics74                                                             |
| Summary                                                                 |
| Calculating What to Specify75                                           |
| CHAPTER 7 : CONCLUSIONS                                                 |
| Correlations77                                                          |
| SR Predictions                                                          |
| RCP Predictions                                                         |
| Test Method                                                             |
| Curing Method                                                           |
| CHAPTER 8 : RECOMMENDATIONS                                             |
| BIBLIOGRAPHY                                                            |
| APPENDICES                                                              |
| Appendix A: Validation Batches 28-Day Compressive Strength Data         |
| Appendix B: Validation Batches 56-Day Compressive Strength Data         |
| Appendix C: Validation Batches 28-Day Static Modulus of Elasticity Data |
| Appendix D: Validation Batches 56-Day Static Modulus of Elasticity Data |
| Appendix E: Validation Batches 56-Day Hardened Concrete Absorption Data |

| Appendix F: SR-RCP Batches 28-Day Compressive Strength Data                     |
|---------------------------------------------------------------------------------|
| Appendix G: SR-RCP Batches 28-Day Accelerated Compressive Strength Data         |
| Appendix H: SR-RCP Batches 56-Day Compressive Strength Data                     |
| Appendix I: SR-RCP Batches 91-day Compressive Strength Data                     |
| Appendix J: 28-Day Surface Resistivity Data                                     |
| Appendix K: 28-Day Accelerated Surface Resistivity Data 105                     |
| Appendix L: 56-Day Surface Resistivity Data 107                                 |
| Appendix M: 91-Day Surface Resistivity Data 109                                 |
| Appendix N: 28-Day Accelerated Rapid Chloride Permeability Data 111             |
| Appendix O: 56-Day Rapid Chloride Permeability Data 113                         |
| Appendix P: 91-Day Rapid Chloride Permeability Data 115                         |
| Appendix Q: Redo SR-RCP Rapid Chloride Permeability Data 117                    |
| Appendix R: Redo SR-RCP Surface Resistivity Data                                |
| Appendix S: Unpublished TTU Class D 25% C Study Rapid Chloride Permeability     |
| Data                                                                            |
| Appendix T: Unpublished TTU Class D 25% C Study Surface Resistivity Data 120    |
| Appendix U: Unpublished TTU Slag-Fly Ash Study Rapid Chloride Permeability      |
| Data                                                                            |
| Appendix V: Unpublished TTU Slag-Fly Ash Study Surface Resistivity Data 122     |
| Appendix W: Unpublished TTU Aggregate Study 56-Day Rapid Chloride               |
| Permeability Data                                                               |
| Appendix X: Unpublished TTU Aggregate Study 56-Day Surface Resistivity Data 124 |

| Appendix Y: Unpublished TTU Aggregate Study 28-Day Accelerated Rapid                 |
|--------------------------------------------------------------------------------------|
| Chloride Permeability Data                                                           |
| Appendix Z: Unpublished TTU Aggregate Study 28-Day Accelerated Surface               |
| Resistivity Data                                                                     |
| Appendix AA: Unpublished Effect of SCM on SR Study 28-Day Surface Resistivity        |
| Data 127                                                                             |
| Appendix AB: Unpublished Effect of SCM on SR Study 56-day Surface Resistivity        |
| Data 129                                                                             |
| Appendix AC: Unpublished Effect of SCM on SR Study 91-Day Surface Resistivity        |
| Data                                                                                 |
| Appendix AD: RES 2010-007 TDOT Class D 56-Day Rapid Chloride Permeability 133        |
| Appendix AE: RES 2011-09 TDOT Class D 56-Day Rapid Chloride Permeability 135         |
| Appendix AF: RES 2013-11 TDOT Class D 56-Day Rapid Chloride Permeability 136         |
| Appendix AG: RES 2010-035 TDOT Class D 91-Day Rapid Chloride Permeability 138        |
| Appendix AH: TDOT Class D Rapid Chloride Permeability Predicted and Measured         |
| Results                                                                              |
| Appendix AI: 50/35/15 Rapid Chloride Permeability Predicted and Measured Results 140 |
| Appendix AJ: Rapid Chloride Permeability Predicted (with equation based on           |
| additional results) and Measured Results                                             |
| Appendix AK: TDOT Class D Surface Resistivity Predicted and Measured Results 144     |
| Appendix AL: 50/35/15 Surface Resistivity Predicted and Measured Results 146         |
| Appendix AM: Surface Resistivity Predicted (with equation based on additional        |
| results) and Measured Results                                                        |

# LIST OF TABLES

| TABLE 3.1: Average Results from Sieve Analysis                                      | . 15 |
|-------------------------------------------------------------------------------------|------|
| TABLE 3.2: Average Results for Specific Gravity and Absorption                      | . 16 |
| TABLE 3.3: Class F Fly Ash Chemical Composition                                     | . 16 |
| TABLE 4.1: Mixture Designs                                                          | . 18 |
| TABLE 4.2: Comparison of Mixture Design Attributes with TDOT Class D PCC            |      |
| Requirements                                                                        | . 18 |
| TABLE 4.3: Testing Protocol for Validation Batches                                  | . 19 |
| TABLE 4.4: Testing Protocol for RCP / Surface Resistivity Batches                   | . 22 |
| TABLE 4.5: Other Available TTU RCP / Surface Resistivity Data                       | 23   |
| TABLE 4.6: Other TTU Surface Resistivity Only Data                                  | . 25 |
| TABLE 5.1: Plastic Property Results for TDOT Class D Validation Mixture             | . 27 |
| TABLE 5.2: Plastic Property Results for the 50/35/15 Validation Mixture             | . 27 |
| TABLE 5.3: Hardened Property Results for TDOT Class D Validation Mixture            | 28   |
| TABLE 5.4: Hardened Property Results for 50/35/15 Validation Mixture                | 28   |
| TABLE 5.5: Compressive Strength Results for TDOT Class D Mixture SR-RCP Batches     | . 30 |
| TABLE 5.6: Compressive Strength Results for 50/35/15 Mixture SR-RCP Batches         | . 31 |
| TABLE 5.7: Surface Resistivity Results for TDOT Class D Mixture SR-RCP Batches      | . 32 |
| TABLE 5.8: Surface Resistivity Results for 50/35/15 Mixture SR-RCP Batches          | 33   |
| TABLE 5.9: Rapid Chloride Permeability Results for TDOT Class D Mixture SR-RCP      |      |
| Batches                                                                             | . 34 |
| TABLE 5.10: Rapid Chloride Permeability Results for 50/35/15 Mixture SR-RCP Batches | . 35 |
| TABLE 5.11: Surface Resistivity Results for SR-RCP Redo Batches                     | 36   |

| TABLE 5.12: Rapid Chloride Permeability Results for SR-RCP Redo Batches                  | . 36 |
|------------------------------------------------------------------------------------------|------|
| TABLE 5.13: Surface Resistivity and Rapid Chloride Permeability Results from the         |      |
| Unpublished TTU Class D 25%C Study                                                       | . 37 |
| TABLE 5.14: Surface Resistivity and Rapid Chloride Permeability Results from the         |      |
| Unpublished TTU Slag-Fly Ash Study                                                       | . 38 |
| TABLE 5.15: Surface Resistivity and Rapid Chloride Permeability Results from the         |      |
| Unpublished TTU Aggregate Study                                                          | . 39 |
| TABLE 5.16: Accelerated Surface Resistivity and Rapid Chloride Permeability Results from |      |
| the Unpublished TTU Aggregate Study                                                      | . 39 |
| TABLE 5.17: 28-day Surface Resistivity Results for the Unpublished Effect of SCM on SR   |      |
| Study                                                                                    | . 41 |
| TABLE 5.18: 56-day Surface Resistivity Results for the Unpublished Effect of SCM on SR   |      |
| Study                                                                                    | . 41 |
| TABLE 5.19: 91-day Surface Resistivity Results for the Unpublished Effect of SCM on SR   |      |
| Study                                                                                    | . 42 |
| TABLE 5.20: Comparison RCP Values from Previous TDOT Projects                            | . 43 |
| TABLE 6.1: Statistical Comparisons with Results from Previous TDOT Projects              | . 45 |
| TABLE 6.2: Statistical Comparisons of Data and Equations in Figure 6.1                   | . 55 |
| TABLE 6.3: Statistical Comparisons of Data and Equations in Figure 6.2                   | . 56 |
| TABLE 6.4: Statistical Comparisons of Data and Equations in Figure 6.3                   | . 57 |
| TABLE 6.5: Statistical Comparisons of Predicted and Measured RCP Values                  | . 61 |
| TABLE 6.6: Statistical Comparisons of Predicted and Measured SR Values                   | . 67 |
| TABLE 6.7: Comparison of SR-RCP Correlation Coefficients                                 | . 68 |

| TABLE 6.8: Comparison of SR and RCP Variability                                         | 69 |
|-----------------------------------------------------------------------------------------|----|
| TABLE 6.9: Comparison of SR and RCP Logistics                                           | 70 |
| TABLE 6.10: Summary Comparison of SR and RCP                                            | 70 |
| TABLE 6.11: Comparison of TDOT Selected mixtures                                        | 73 |
| TABLE 6.12: Comparison of Accelerated and Normal Cured 28-day Results Correlations with |    |
| 56 and 91-day Normally Cured Results                                                    | 73 |
| TABLE 6.13: Comparison of Accelerated and Normal Cured Logistics                        | 74 |
| TABLE 6.14: Summary of Comparison of Accelerated and Normal Curing                      | 74 |
| TABLE 6.15: Conversions from 1200-Coulombs @ 56-days RCP to Equivalent 56-day SR        | 75 |
|                                                                                         |    |

# LIST OF FIGURES

| FIGURE 6.1: SR-RCP Correlation with All Available TTU Data                                 |
|--------------------------------------------------------------------------------------------|
| FIGURE 6.2: SR-RCP Correlation with only TTU Normally Moist Cured Results                  |
| FIGURE 6.3: SR-RCP Correlation with only TTU Accelerated Moist Cured Results               |
| FIGURE 6.4: Prediction of 56 and 91-day RCP Results with 28-day Accelerated RCP            |
| Results                                                                                    |
| FIGURE 6.5: Prediction of 91-day RCP Results with 56-day RCP Results from the Current      |
| Project                                                                                    |
| FIGURE 6.6: Prediction of 91-day RCP Results with All Available TTU 56-day RCP Results. 60 |
| FIGURE 6.7: Prediction of 56 and 91-day SR Results with 28-day Accelerated SR Results 62   |
| FIGURE 6.8: Prediction of 56 and 91-day SR Results with TDOT 28-day Normally Moist         |
| Cured SR Results                                                                           |
| FIGURE 6.9: Prediction of 56 and 91-day SR Results with All Available TTU 28-day           |
| Normally Moist Cured SR Results                                                            |
| FIGURE 6.10: Prediction of 91-day SR Results with 56-day SR Results from the Current       |
| Project                                                                                    |
| FIGURE 6.11: Prediction of 91-day SR Results with All Available TTU 56-day SR Results 66   |
| FIGURE 6.12: Mean Normally Cured SR Result vs. Curing Time71                               |
| FIGURE 6.13: Mean Time Associated with Accelerated Curing of TDOT Selected Mixtures 72     |

## **CHAPTER 1 : INTRODUCTION**

A key step for increasing bridge deck service life is to develop lower rapid chloride permeability (RCP) concrete mixtures. In this regard, TDOT Materials & Tests (M&T) Division is in the process of developing a new lower permeability bridge deck concrete specification, which calls for the evaluation of several alternative mixes. The current AASHTO procedure for determining chloride permeability of a concrete mix takes long and is expensive. Thus, for TDOT to reach decisions on alternative mixes being compared in a more timely way calls for a more rapid and accurate procedure for determining chloride permeability to be developed that would benefit both TDOT and its partners.

#### **Benefits to TDOT**

Delaying chlorides from reaching the critical reinforcement in bridge decks will extend bridge deck service life and reduce cost to TDOT. Less frequent need for maintenance / rehabilitation / reconstruction incursions into traffic will result in fewer traffic delays, increased safety, and greater efficiency through lower life cycle costs for Tennessee bridge decks. Having critical RCP information sooner would allow TDOT decision makers more latitude in achieving TDOT goals of safety, efficiency, and collaboration with local partners.

#### **Purpose of the Proposed Research**

Bridge deck mixture design development, mixture design submittals, quality control, and quality assurance testing could all be streamlined if concrete chloride permeability could be determined more rapidly; however, accuracy should not be sacrificed for speed. Fortunately, a Virginia DOT researcher developed a curing regime that has shown promise in determining the results of rapid chloride permeability tests (RCPT) faster. In addition, a new surface resistivity (SR) method has gained favor with the Florida DOT. There has been some ambiguity, however, as to whether the accelerated curing correlates best with 56 or 91-day chloride permeability. The research will address this ambiguity as well as attempt to determine a rapid, efficient, and reliable means for determining concrete chloride permeability.

## **CHAPTER 2 : LITERATURE REVIEW**

#### **Bridge Deck PCC**

According to a two-year study conducted by the National Association of Corrosion Engineers in 2001, 15% of the 583,000 bridges in the U.S. are structurally deficient because of corroded steel and steel reinforcement (1). As of December 2014, the total number of structurally deficient bridges in the U.S. was 61,365 and the number of functionally obsolete bridges was 84,525 (2). The number one cause of deterioration in reinforced concrete bridge decks is chloride-induced corrosion of reinforcing steel (3). The resistance of concrete to external forms of attack is reliant on its permeability (4). ACI defines permeability as "the ability of a given concrete to permit liquids or gases to pass through" (5). There are several factors that reduce the permeability of concrete. Some of the most important include: a low w/cm, incorporation of SCMs, the use of chemical admixtures such as high-range water reducers (HRWR), good workmanship for proper consolidation, and adequate moist curing (6).

#### **Supplementary Cementitious Materials**

The incorporation of SCMs such as fly ash or slag, is a more effective method of reducing concrete permeability than decreasing the w/cm (7; 8). This modification is especially important whenever high durability is a prescriptive requirement (9). Pozzolanic SCMs are beneficial to concrete because of their reaction with calcium hydroxide from portland cement hydration, producing additional calcium silicate hydrate. When properly substituted, SCMs decrease permeability and increase the ultimate strength (10; 11; 12). Ternary mixtures incorporate three cementitious materials: portland cement and two SCMs (13). Ternary mixtures provide even higher resistance to chloride ion penetrability and higher durability than plain PCC and binary

mixtures (11, 14). Higher durability results in less cracking, spalling, loss of strength, and loss of mass (4). Thus, high durability is vital for extending the service life of concrete structures (15).

#### Slag

Ground granulated blast furnace slag (GGBFS) has been used as a SCM since 1774 (16). The production of GGBFS began in the United States in 1896 (16). Originally, GGBFS was used in the production of portland cement, but in the 1950s GGBFS began to be used as an SCM in concrete (16). GGBFS is a glassy, granular material formed from a rapid cooling process, usually by quenching the molten slag with water (17; 18). The molten slag originates as a byproduct of iron production (16). Iron oxide sources (ore, pellets, sinters) are melted using a blast-furnace that produces two products: molten iron and slag (16). After the rapid cooling process, the granular slag material is then ground in mills to a fineness that approximates that of portland cement (10). GGBFS is classified by its reactivity as either Grade 80, 100, or 120 (19). The compressive strength of portland cement mortar cubes to determine the reactivity of the GGBFS (19).

GGBFS is composed mainly of silica, alumina, calcium, and magnesium oxides (16). GGBFS is cementitious material that is referred to as a latent hydraulic material because of its slow hydration with water (20). When combined with portland cement, the hydration process of the portland cement accelerates the hydration of GGBFS (16). During the hydration of GGBFS with portland cement, GGBFS converts calcium hydroxide into additional calcium silicate hydrate similar to pozzolanic reactions (16). The variables that affect the cementitious properties of GGBFS in concrete are: the chemical composition, the alkali concentration in the mixture, the glass content of the GGBFS, the fineness of the GGBFS, and the temperature during the initial hydration phases (16).

The plastic properties effects of GGBFS as an SCM in PCC include: reduced water demand, improved workability, increased setting time, and altered bleeding rates (10). Some research has suggested that the reduction in water demand is due to GGBFS's lower absorption compared to portland cement (16). The workability and consolidation of PCC containing GGBFS has shown to increase due to a better particle dispersion and the higher fluidity of the paste (16). As the GGBFS percent replacement increases, the setting time of PCC increases due to the slow hydration rate of GGBFS (10; 16). The bleeding rate of PCC with GGBFS is affected based on the fineness of the GGBFS (16). As the fineness increases, the bleeding rate can be reduced and when a coarser GGBFS is used, the bleeding rate can increase (16). The bleeding rate of GGBFS PCCs can also increase due to the increased time of set and the non-absorptive qualities of dense GGBFS (16).

GGBFS hardened property effects include: lower early strength, higher or equal later strength, lower heat of hydration, higher alkali-aggregate reactivity resistance, decreased permeability, and higher durability (10). The strength gain rate is mainly dependent on the reactivity of the GGBFS and the percent replacement (16). As the percent replacement increases, the slope of the heat evolution curve becomes more gradual (10; 16). The peak heat of hydration temperature also decreases, reducing the chances of thermal cracking (10; 16). GGBFS also improves sulfate attack resistance and reduces alkali-aggregate reactivity with replacements exceeding 35% (10). The permeability of the concrete greatly reduces as the dosage of GGBFS increases (16). GGBFS PCCs provide better pore-size distribution and reduced pore connectivity when compared to ordinary PCCs (16). The reduced permeability then increases the concrete's resistance to deicing chemicals (16). The increased resistance to penetrating chloride ions from deicers further delay the risk of steel reinforcement corrosion (4; 16). Ternary PCC mixtures incorporating GGBFS provide greater durability and increased surface resistivity compared to ordinary PCC (21). These aspects make PCCs with GGBFS better qualified for structures required to face severe exposure conditions (15).

#### Class F fly ash

Fly ash is the most widely used SCM in concrete and has been used in the United States since the 1930s (10). Fly ash is a finely divided residue formed from the combustion of pulverized coal that is transported by flue gases and filtered by a particle removal system (17; 22). The main sources of fly ash generation are electric power-generating stations (10). The three different fly ashes (Class N, F, or C) are classified based on their pozzolanic or pozzolanic and cementitious properties as well as their chemical compositions (22). Class F fly ash is a pozzolanic fly ash produced from combustion of anthracite or bituminous coal (10; 22; 23). Class F fly ash is also referred to as "low calcium fly ash" because it usually contains less than 10 percent CaO (24). Class F fly ash is mainly composed of silica, alumina, and iron which are responsible for the ash's pozzolanic reactivity. Other components include calcium, magnesium, sulfur, potassium, and sodium (10). ASTM C618's chemical requirements for Class F fly ash consists of a 70% minimum sum of silicon dioxide (SiO2) + aluminum oxide (Al2O3) + iron oxide (Fe2O3) (22).

The quality of the fly ash depends on the loss of ignition (LOI), fineness, chemical composition, and uniformity (22; 24). LOI represents the amount of unburned carbon remaining in the fly ash. Higher LOI levels can lead to air entrainment complications in fresh concrete (24). ASTM C 618 limits the maximum LOI for Class F fly ash to 6% to reduce air entrainment

absorption (10; 22). Air entrainment absorption results in a reduction in durability, especially for freeze-thaw resistance (18; 25).

Fineness is defined as the percent by weight of the material retained on the  $45\mu$ m (No. 325) sieve (22). ASTM C 618 states the maximum fineness allowed is 34% for Class F fly ash (22). The achievable fly ash fineness is largely dependent on the condition of the coal crushers and the abrasive resistance of the parent coal (24). Coarser gradations tend to produce ash with less reactivity and higher carbon contents versus finer gradations (24). The uniformity of the ash simply refers to the consistency from shipment to shipment (24).

The spherical shape of fly ash particles produce a ball-bearing effect in the mixing process which provides a similar workability associated with an increased w/cm, thus reducing the required water demand (10; 24). When fly ash is substituted by weight, the lower specific gravity of fly ash causes an increase in paste volume, which further increases workability (10). Other fly ash substitution plastic property benefits include: reduced segregation, reduced bleeding, improved consolidation, and reduced heat evolution (10; 24).

The hardened property improvements of fly ash substitution stem from its pozzolanic nature which combines with calcium hydroxide, a byproduct of portland cement hydration, to produce additional calcium silicate hydrate allowing near complete utilization of portland cement and its byproducts (10; 24). The hardened concrete improvements of fly ash substitution include increased ultimate strength, decreased permeability, improved durability, improved sulfate attack resistance, and reduced alkali-aggregate reactivity (10). The reduction in permeability through fly ash replacements increases the chloride-ion penetration resistance, outperforming regular PCC durability wise (14).

#### **Accelerated Curing**

Concretes containing SCMs produce low early age strength and high early age permeability due to the slower pozzolanic reaction rate compared to ordinary portland cement (8). These concretes can then provide higher later age strength and lower permeability than regular PCC due to pozzolanic reactions, converting calcium hydroxide into additional calcium silicate hydrate (9). The different hydration rates have led to the recommendation of an extended moist curing period of 56 days for PCCs containing SCMs than the recommended 28 days of moist curing which is often used to classify ordinary PCC performance (15; 26).

A 28-day accelerated curing method for concretes containing SCMs has been recently proposed to provide an earlier potential property estimate than the previous 56-day moist curing recommendation (26). This curing method is suggested to be useful for slower hydrating SCMs, allowing for a reduction in test time and an increase in the overall production efficiency (9; 26; 27). The accelerated curing method consists of curing the specimens at 73.5 °F for 7 days in accordance with ASTM C192, then immersing the specimens in another lime water curing tank at 100.5 °F for the remaining 21 days as per ASTM C1202, section 8.2.3 (9; 26).

Research has shown that other 28-day elevated temperature moist curing methods produce equivalent room temperature properties ranging from 6 to 14 months (9; 27). The equivalent age is dependent upon the mixture's proportions and the duration of elevated temperature curing (27). Some research has established correlations between the accelerated curing properties at earlier ages to the normally cured 56-day properties (28).

Accelerated curing methods are especially common at precast plants that utilize ordinary portland cement mixtures where initial property development is more important than the hindered long term performance. Higher initial strengths due to accelerated curing methods are associated

8

with lower ultimate strengths (29). This also applies to durability; the high early age durability usually results in lower durability long term due to rapid initial hydration and the development of an unrefined pore structure (9). This effect on long term strength and durability has also been shown to apply to mixtures containing GGBFS or silica fume (7), although some research has shown that mixtures containing fly ash are not hindered by early elevated temperatures during curing, but rather that they exceed the long term potential of room temperature moist cured specimens (27).

#### **Rapid Chloride Permeability Testing (ASTM C1202)**

ASTM C1202, referred to as the Rapid Chloride Permeability Test (RCPT), is a test method that measures the concrete specimen's electrical conductance which is used to classify its resistance to penetrating chloride ions (26). The results from RCP testing could be obtained much more rapidly compared to the salt ponding test – after only 6 hours compared to 90 days (30; 31). This relatively high test speed allows for extensive testing of chloride permeability resistance. A direct voltage of 60V is applied through one side of the test cell that is filled with a 3% sodium chloride solution which saturates the side surface of the concrete specimen. The voltage then passes through the specimen and into the opposite side of the test cell which saturates the specimen in a 0.3 N sodium hydroxide solution (32; 33). A lower total charge passed through the specimen implies a lower permeability and a higher resistance to penetrating chloride ions (8). RCPT became a popular method of measuring the resistance of concrete to chloride ion genetration after its results were found to have good correlation with the 90-day salt ponding test (30; 31; 34).

The values obtained in the RCP test are often affected by several factors, including the movement of all ions present in the pore solution, as well as the aggregate type and any supplementary cementitious materials (SCMs) used (30; 31; 34). The addition of SCMs including

fly ash and GGBFS lowers the chloride permeability of concrete by densifying the paste pore structure and reducing the pore structure's connectivity (8; 32). The additional incorporated SCM in ternary mixtures can lower the permeability of concrete even further, prolonging the time prior to reinforcement corrosion (21).

Additionally, RCP test results have been shown to result in high variability and are difficult to reproduce (34; 35). ASTM C 1202 allows up to a 42% variability between two specimens from the same batch (35). This high variability allows for a wide range of results that may not accurately depict the chloride permeability. The testing for RCP, therefore, requires a large number of samples in order to obtain a statistically valid estimate of the chloride permeability resistance of a mix. The validity of the RCPT has been questioned by several researchers for the temperature increase that occurs in the specimens (36). This has been suggested to increase the permeability, and this is now referred to as the Joule effect (36). Others doubt the test method because of the use of the sodium chloride solution which is thought to cause a reduction in the electrical charge passed, falsifying the results of lower permeability (3).

#### Surface Resistivity (AASHTO TP 95)

AASHTO TP 95 is a new test method used to identify the effects of different concrete additives on its electrical resistivity (37). Using concrete SR to estimate durability is gaining preference for the method's brisk and simple testing procedure as well as the emergence of the correlations between resistivity and permeability (38; 39). The results from SR testing can be obtained within minutes and are non-destructive in nature (40; 41). The FHWA has recently correlated the results from the SR test at 28 days with the results of the RCPT at 56 days as a means of determining concrete permeability (35). The study showed that SR provided the best combination of speed, ease of use, and repeatability (35; 42). The SR test not only proved to be an

easier and faster test method but also provided a lower variability in test results compared to those yielded by RCPT (35).

The commonly used Wenner probe incorporates four equally spaced electrodes that apply a voltage between the outer probes while the inner probes measure the potential difference (42; 43). The handheld device then converts the measured electrical resistance into an apparent resistivity which has been correlated with the results of the RCPT (38; 42). Readings are taken around the cylinder specimen at  $0^{\circ}$ ,  $90^{\circ}$ ,  $180^{\circ}$ , and  $270^{\circ}$  twice, averaging the results for that specimen (44). A correction factor of 1.1 is then multiplied by the average of the readings to include the moist lime water curing condition (35). Higher readings indicate a higher resistance to chloride ion penetration.

The electrical resistance of concrete is dependent upon the microstructure of the paste and the moisture content (43). Concrete mixtures containing various SCMs have proven to significantly increase the SR by densifying the pore structure over time (45). Slower reacting SCMs including fly ash and GGBFS, at certain percent replacements, provide lower SR initially but can more than double the SR at ages greater than 91 days (42). Since not all SCMs develop at the same rate, the developing rate of SR also varies, meaning each variable should be finely tuned to achieve the highest SR possible (42). Class F fly ash has shown to increase the long-term SR due to its pozzolanic reaction and GGBFS has shown to increase the early-age SR (27). Thus, the use of both Class F fly ash and GGBFS in ternary mixtures provides higher SR overall, which corresponds to lower permeability and increased durability (10; 42). Surface resistivity testing has shown that the incorporation of ternary mixtures greatly contributes to increased electrical resistivity which can prolong the service life and while reducing the life-cycle cost of transportation pavements and structures (21). Contrary to RCP, SR results may yield low variability and are easy to reproduce (35; 41). AASHTO TP 95 allows up to a 21% variability between two specimens from the same batch (37). This lower variability translates into not as wide a range in results and may provide a more accurate depiction of chloride permeability compared to that of RCP. The large number of samples tested are not as necessary to meet statistical requirements but rather as to resulting in an even lower variance in statistics computed from the collected data.

#### **Rapid Chloride Permeability versus Surface Resistivity**

Several research studies have been performed comparing RCP to SR to determine if a correlation exists between the results of the two test methods (30; 31; 35; 40; 41). Particularly, studies performed by the Federal Highway Administration (FHWA) (35), the Louisiana Transportation Research Center (LTRC) (46), the University of Tennessee (UT) (30), the University of Florida (UF) with the Florida Department of Transportation (FDOT) (31), and the University of Georgia (UGA) with the American Concrete Institute (ACI) (40) report a power function relationship between RCP and SR data with correlation coefficients larger than 0.85, which suggests that SR strongly correlates with RCP.

The trend reported in the FHWA study was based on data collected on a total of 25 mixtures that were obtained from a variety of mixture designs (35). Specifically, the mixtures used in this study consisted of differing water-to-cementing materials (w/cm) ratios, use of supplementary cementitious materials (SCMs), differing cementing materials contents, and differing coarse aggregate types; the mixtures were tested at 28 and 56 days (35). The FHWA study concluded that SR and RCP are highly correlated, with a correlation coefficient of 0.92 (35).

The trend reported by the LTRC study was based on data obtained from both laboratory and field specimens (46). The laboratory specimens consisted of five mixtures composed of differing w/cm ratio mixtures and differing SCMs that were tested at 14, 28, and 56 days (46). The field specimens were primarily from a Louisiana bridge project that were tested at 28 and 56 days (46). The LTRC study concluded that SR and RCP values correlate well, having a correlation coefficient of 0.89 (46).

The trend reported by the UT study was based on data obtained from bridge deck cores retrieved from bridge decks across Tennessee over three years; these specimens were tested at 28 and 56 days (30). The UT study concluded that a strong correlation was present between SR and RCP, with a correlation coefficient of 0.88 (30).

The trend reported by the UF study was also based on data obtained from field specimens; the specimens were obtained from various projects across Florida, which do include bridge deck mixtures (31). A total of 134 different mixtures, comprised of various SCMs, w/cm ratios, and coarse aggregate types which consisted of at least 500 sample sets, were used in the research; the specimens were tested at 28 and 91 days (31). The overall results for this research showed a strong correlation between SR and RCP at 28 and 91 days, with correlation coefficients of 0.94 and 0.93, respectively (31).

The trend reported by the UGA study was based on data of eight mixtures with varying w/cm ratios, SCMs, and cement composition (40). The mixtures were tested for SR at regular intervals until 56 days and tested for SR and RCP at 56 days (40). The UGA study observed that SR and RCP values show a strong correlation, with a correlation coefficient of 0.98.

While the above-mentioned studies were based on various aspects, including mixture designs, laboratory or field data, and testing day, the correlations from the studies followed trends similar to one another (30; 31; 35; 40; 46). The results from these studies provided a broader range

13

of chloride permeability data, which can improve the correlation (30; 31; 35; 40; 46). Therefore, it would appear the SR results can be directly correlated to RCP results.

#### Density, Absorptions, and Voids Test (ASTM C642)

Class F fly ash and GGBFS in ternary PCC mixtures, at proper dosages and with proper moist curing, have proven to decrease the permeability and increase the durability of concrete (10; 47). The use of SCMs may decrease permeability but not always the porosity (48). The overall durability is increased through the reduction of the pore structure continuity (49).

ASTM C642 is a relatively simple test method that estimates concrete durability through determining the specimen's density, percent absorption, and percent voids in the hardened concrete (50). Lower permeability concretes better resist the penetration of moisture and other fluids which are vital for long-term durability (51). The oven drying portion of the test is likely to cause cracking which increases the specimen's percent absorption (33). Despite possible cracking and increased absorption, the test method is still useful for estimating long-term durability through determining the permeable percent voids in the hardened concrete (51).

## **CHAPTER 3 : MATERIALS**

The coarse aggregate used in the research was a No. 57 stone from a local aggregate producer. The fine aggregate was river sand commonly used throughout middle Tennessee. Sieve analyses were conducted in triplicate on both coarse and fine aggregates as per AASHTO T 27 and AASHTO T 11 (52; 53). The average results of the sieve analysis on the aggregates are shown in Table 3.1. The analysis showed that the coarse aggregate met specifications for a No. 57 stone as per ASTM C 33 (54). The fine aggregate met the specifications for use in concrete as per TDOT 903.01 (57). Specific gravity and absorption testing were also conducted in triplicate on the coarse and fine aggregates as per AASHTO test methods T 85 and T 84, respectively (55; 56). The average results for the aggregates are shown in Table 3.2.

|                    |                    | 0                                         |                                          |                                         |                                                        |
|--------------------|--------------------|-------------------------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------------------|
| Sieve Size<br>(in) | Sieve Size<br>(mm) | Coarse<br>Aggregate<br>Percent<br>Passing | ASTM C33<br>(54) No. 57<br>Specification | Fine<br>Aggregate<br>Percent<br>Passing | TDOT 903.01<br>(57) Fine<br>Aggregate<br>Specification |
| 1.5                | 37.5               | 100                                       | 100                                      |                                         | —                                                      |
| 1                  | 25                 | 100                                       | 95-100                                   |                                         |                                                        |
| 0.5                | 12.5               | 59                                        | 25-60                                    |                                         |                                                        |
| 0.375              | 9.5                | —                                         | —                                        | 100                                     | 100                                                    |
| No. 4              | 4.75               | 3                                         | 0-10                                     | 98                                      | 95-100                                                 |
| No. 8              | 2.36               | 2                                         | 0-5                                      | 92                                      | —                                                      |
| No. 16             | 1.18               | —                                         | —                                        | 83                                      | 50-90                                                  |
| No. 30             | 0.6                | —                                         | —                                        | 64                                      | —                                                      |
| No. 50             | 0.3                |                                           |                                          | 8                                       | 5-30                                                   |
| No. 100            | 0.15               |                                           |                                          | 1                                       | 0-10                                                   |
| No. 200            | 0.075              |                                           |                                          | 0.4                                     | 0 - 3                                                  |

 TABLE 3.1: Average Results from Sieve Analysis

| Property       | Coarse Aggregate | Fine Aggregate |
|----------------|------------------|----------------|
| BSG (dry)      | 2.613            | 2.577          |
| BSG (SSD)      | 2.651            | 2.609          |
| Absorption (%) | 1.42             | 1.25           |

**TABLE 3.2:** Average Results for Specific Gravity and Absorption

Quantities of necessary aggregates were secured and stockpiled so that the same aggregates were used throughout the laboratory evaluation. Similarly, AASHTO M 295 (58) Class F fly ash (see Table 3.3), AASHTO M 302 (59) Grade 120 ground granulated blast furnace slag (GGBFS), and AASHTO M 194 (60) chemical admixtures were obtained from regional suppliers and stockpiled so that the same materials were used throughout the laboratory evaluation. Type I portland cement (PC) meeting AASHTO M 85 (55) criteria was obtained from a regional supplier. Local tap water was used for all laboratory mixtures.

| TIDEE 5.5. Cluss I Try Ash Chemical Composition |                        |                                    |                                      |  |
|-------------------------------------------------|------------------------|------------------------------------|--------------------------------------|--|
| Component                                       | Percent<br>Composition | ASTM C 618-12<br>(22) Requirements | AASHTO M 295-07<br>(58) Requirements |  |
| SiO <sub>2</sub>                                | 48.91                  | —                                  | —                                    |  |
| Al <sub>2</sub> O <sub>3</sub>                  | 19.46                  | —                                  | —                                    |  |
| Fe <sub>2</sub> O <sub>3</sub>                  | 16.41                  | —                                  | —                                    |  |
| $SiO_2 + Al_2O_3 + Fe_2O_3$                     | 84.79                  | 70% minimum                        | 70% minimum                          |  |
| CaO                                             | 6.76                   | —                                  | —                                    |  |
| MgO                                             | 0.98                   | —                                  | —                                    |  |
| $SO_3$                                          | 1.91                   | 5% maximum                         | 5% maximum                           |  |
| Moisture Content                                | 0.11                   | 3% maximum                         | 3% maximum                           |  |
| Na <sub>2</sub> O                               | 0.84                   | —                                  | 1.5% maximum                         |  |
| Loss-on-Ignition                                | 1.37                   | 6% maximum                         | 5% maximum                           |  |

 TABLE 3.3: Class F Fly Ash Chemical Composition

## **CHAPTER 4 : PROCEDURE**

#### Overview

The purpose of the project was to provide recommendations to TDOT on determining concrete chloride permeability rapidly and effectively. The research team reasoned that five initial questions needed to be answered. Specifically:

- 1. Is there good correlation between SR and RCP?
- 2. How well do RCP values measured at earlier ages correlate with RCP values measured at later ages?
- 3. How well do SR values measured at earlier ages correlate with SR values measured at later ages?
- 4. What are the advantages and disadvantages of accelerated curing of SR and RCP specimens?
- 5. Which test method (SR or RCP) is logistically superior?

The answers to these five initial questions allowed the research team to formulate well supported recommendations on the following topics:

- A. Choice of test method (SR or RCP)
- B. Choice of curing regime (normal or accelerated)

The strength of the answers to the initial questions and the subsequent recommendations are dependent on the amount of data collected in the study. Therefore, the research team attempted to maximize the amount and diversity of data on which the answers were based. The research team proceeded on the premise that data diversity would be limited to mixtures TDOT would consider using on a bridge deck (no water-to-cementing materials ratio (w/cm) > 0.40, no exotic materials, etc.). TDOT M&T management chose two mixtures for the project. Other data was

obtained from current and past TTU projects to increase the amount of data available for correlations and predictions.

# Mixtures Chosen by TDOT

TDOT M&T management chose two mixtures: a Class D with 20% Class F fly ash and a second mixture with 35% slag and 15% Class F fly ash. Each mixture was designed by trial batching. The trial batches were 1.35-ft<sup>3</sup> in size and were mixed in a 3.0-ft<sup>3</sup> nominal capacity rotary mixer in accordance with AASHTO R 39 (61). The mixture designs are shown in Table 4.1. The comparisons of each mixture with TDOT 604.03 are shown in Table 4.2.

| Component                         | TDOT Class D | 50/35/15   |
|-----------------------------------|--------------|------------|
| Type I Portland Cement (lbs/CY)   | 496          | 310        |
| Class F Fly Ash (lbs/CY)          | 124          | 93         |
| Grade 120 Slag (lbs/CY)           | 0            | 217        |
| No. 57 Limestone (lbs/CY SSD)     | 1857         | 1854       |
| River Sand (lbs/CY SSD)           | 1118         | 1118       |
| Water (lbs/CY)                    | 229.5        | 229.5      |
| Design Percent Air                | 7            | 7          |
| Air Entrainer, oz/cwt (oz/CY)     | 0.5 (3.1)    | 1.55 (9.6) |
| ASTM C 494 Type A, oz/cwt (oz/CY) | 0.1 (0.6)    | 1 (6.2)    |
| ASTM C 494 Type F, oz/cwt (oz/CY) | 3 (18.6)     | 2.1 (13.0) |

**TABLE 4.1: Mixture Designs** 

| TABLE 4.2: Comparison of Mixture Design Attributes with TDOT 604.03 Class | D PCC |
|---------------------------------------------------------------------------|-------|
| Requirements                                                              |       |

| Quantity / Ratio / Percentage                              | TDOT 604.03 Class D<br>PCC Requirement (62) | TDOT Class D | 50/35/15 |
|------------------------------------------------------------|---------------------------------------------|--------------|----------|
| Cementing Materials Content<br>(lbs/CY)                    | 620 minimum                                 | 620          | 620      |
| W/CM Ratio                                                 | 0.40 maximum                                | 0.370        | 0.370    |
| Percent Fine Aggregate by<br>Total Aggregate Volume        | 44 maximum                                  | 38           | 38       |
| Percent Class F Fly Ash<br>Substitution (by Weight) for PC | 20 maximum for Class F                      | 20           | 15       |
| Percent Slag Substitution (by<br>Weight) for PC            | 35 maximum                                  | 0            | 35       |

### **Validation Batches**

Five validation batches of each mixture were produced and tested as per Table 4.3. Four 6x12-inch cylinders and three 3x6-inch cylinders were cast from each batch. After approximately 24 hours, the cylinders were de-molded and placed in lime-water kept at  $73 \pm 3^{\circ}$  F as per AASHTO R 39 (61) until the specified testing time. Slump was determined in accordance with AASHTO T 119 (63). Unit weight and gravimetric air content were determined in accordance with AASHTO T 121 (64). Air content by pressure method was determined using a pressure meter in accordance with AASHTO T 152 (65). The temperature of concrete was determined in accordance with AASHTO T 30 (66). The 6x12-inch and 3x6-inch cylinders were cast and cured in accordance with AASHTO R 39 (61). The hardened concrete was tested for compressive strength in accordance with AASHTO T 22 (67) using un-bonded caps per ASTM C 1231 (68). Static modulus of elasticity was determined in accordance with ASTM C 469 (69). Absorption of hardened concrete after boiling was determined in accordance of the strength of the

| TIDEL 4.5. Testing Trotocorror Vandation Datenes                    |                                                                 |  |  |  |
|---------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|
| Number of Batches per Mixture                                       | 5                                                               |  |  |  |
| Size of each batch (ft <sup>3</sup> )                               | 1.35                                                            |  |  |  |
| Slump (AASHTO T 119)                                                | 1 per batch                                                     |  |  |  |
| Unit Weight and Gravimetric Air Content<br>(AASHTO T 121)           | 1 per batch                                                     |  |  |  |
| Air Content by Pressure Method (AASHTO T 152)                       | 1 per batch                                                     |  |  |  |
| Compressive Strength * @ 28 and 56 days<br>(AASHTO T 22)            | 2 6x12 cylinders per date per batch                             |  |  |  |
| Static Modulus of Elasticity* @ 28 and 56 days<br>(ASTM C 469)      | 1 of the 6x12 compressive strength cylinders per date per batch |  |  |  |
| Absorption and Voids in Hardened Concrete @ 56<br>days (ASTM C 642) | 3 3x6 cylinders per batch                                       |  |  |  |

**TABLE 4.3: Testing Protocol for Validation Batches** 

\*- with neoprene pad caps in steel retainers

#### **SR-RCP** Batches of the TDOT Mixtures

#### Casting

Twenty SR-RCP batches of each mixture were produced and tested as per Table 4.4. Twenty-one 4x8-inch cylinders were cast from each batch. The 4x8-inch cylinders were cast in accordance with AASHTO R 39 (61).

#### Normally Cured Specimens

After approximately 24 hours, 15 of the 21 cylinders were de-molded and placed in limewater tank at  $73 \pm 3^{\circ}$  F as per AASHTO R 39 (61) until the specified testing time. The 4x8-inch cylinders were cured in accordance with AASHTO R 39 (61). Unfortunately, on the night of 6/11/14, the tank heaters went to maximum for several hours after an apparent power surge following a power outage. Approximately 30 cylinders were exposed to water temperatures up to 88.5°F until the following morning.

The hardened concrete was tested for RCP in accordance with AASHTO T 277 (70). The hardened concrete was tested for SR in accordance with AASHTO TP 95-11 (37). Following SR testing, the SR specimens were tested for compressive strength in accordance with AASHTO T 22 (67) using un-bonded caps per ASTM C 1231 (68).

#### Specimens Cured in an Accelerated Manner

After approximately 24 hours, six of the 21 cylinders were de-molded and placed in limewater kept at  $73 \pm 3^{\circ}$  F as per AASHTO R 39 until seven days after casting (61). Seven days after casting, the 4x8-inch cylinders were transferred to the  $100 \pm 3^{\circ}$  F tank and cured in accordance ASTM C 1202 with until the specified testing time (26). Testing for RCP, SR, and compressive strength were performed on the accelerated specimens in the same manner as normally cured specimens.

| Number of Batches per Mixture                 | 20                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Size of each batch (ft <sup>3</sup> )         | 1.35                                                                                                                                                                                                                                                                                                               |
| Rapid Chloride Permeability<br>(AASHTO T 277) | <ul> <li>3 samples cut from separate 4x8 cylinders per batch</li> <li>@ 28 days of accelerated curing</li> <li>3 samples cut from separate 4x8 cylinders per batch</li> <li>@ 56 days of normal curing</li> <li>3 samples cut from separate 4x8 cylinders per batch</li> <li>@ 91 days of normal curing</li> </ul> |
| Surface Resistivity<br>(AASHTO TP 95-11)      | <ul> <li>3 4x8 cylinders per batch @ 28 days of accelerated curing</li> <li>3 4x8 cylinders per batch @ 28 days of normal curing</li> <li>3 4x8 cylinders per batch @ 56 days of normal curing</li> <li>3 4x8 cylinders per batch @ 91 days of normal curing</li> </ul>                                            |
| Compressive Strength *<br>(AASHTO T 22)       | Surface resistivity cylinders will be compression tested following surface resistivity testing                                                                                                                                                                                                                     |

 TABLE 4.4: Testing Protocol for RCP / Surface Resistivity Batches

\*- with neoprene pad caps in steel retainers

## **Other TTU RCP-SR Data Sets**

The research team reasoned that both correlations and predictions would be stronger if based on larger and more diverse data sets. Therefore, the research team attempted to maximize the amount and diversity of data on which answers were based with the provision that data diversity would be limited to mixtures TDOT would consider using on a bridge deck (no w/cm > 0.40, no exotic materials, etc.). Four data sets containing both RCP and SR data on the same batches were available. A summary of the four data sets is provided in Table 4.5 and brief descriptions of each study are provided below.

| Mixture         | Project                               | % C ash | % F ash | % Slag | 28-day<br>Accelerated<br>Points | 56-day<br>Points | 91-day<br>Points |
|-----------------|---------------------------------------|---------|---------|--------|---------------------------------|------------------|------------------|
| 50/25/25F       | TTU Slag<br>Study                     | 0       | 25      | 25     | 0                               | 2                | 2                |
| 50/30/20F       | TTU Slag<br>Study                     | 0       | 20      | 30     | 0                               | 2                | 2                |
| 50/35/15F       | TTU Slag<br>Study                     | 0       | 15      | 35     | 0                               | 2                | 2                |
| 50/25/25C       | TTU Slag<br>Study                     | 25      | 0       | 25     | 0                               | 2                | 2                |
| 50/30/20C       | TTU Slag<br>Study                     | 20      | 0       | 30     | 0                               | 2                | 2                |
| 50/35/15C       | TTU Slag<br>Study                     | 15      | 0       | 35     | 0                               | 2                | 2                |
| TDOT D<br>20F   | TTU<br>Aggregate<br>Variable<br>Study | 0       | 20      | 0      | 0                               | 16               | 0                |
| TDOT D<br>100PC | TTU High<br>Perm TDOT<br>Class D      | 0       | 0       | 0      | 3                               | 7                | 0                |
| TDOT D<br>25C   | TTU<br>Aborted MS<br>Thesis           | 25      | 0       | 0      | 0                               | 8                | 10               |

TABLE 4.5: Other Available TTU RCP / Surface Resistivity Data

## TTU Slag Study

The unpublished TTU slag study was a preliminary attempt to determine if there was an optimum combination of slag and fly ash for 50% PC replacement. Early results revealed no discernable trend and the study was quickly abandoned.

## TTU Aggregate Variable Study

The unpublished TTU aggregate variable study was a preliminary attempt to determine the effect of coarse and fine aggregate type on RCP and SR. Early results were promising and more testing is planned in the future.
### TTU High Permeability Class D Mixture Study

NASCAR legend Richard Petty said, "You've got to have some slow guys to make the fast guys look fast." This study was an attempt to provide some "slow guys." Specifically, to determine how high RCP would rise (and how low SR would sink) if the worst available TDOT approved choices were made for the coarse aggregate and PC-supplementary cementing materials (SCM) matrix. It is important to note that the w/cm used met TDOT requirements. The designation of "worst available" referred to the poorest performing TDOT approved aggregates in the TTU Aggregate Variable Study. Additional testing is planned for a later time.

#### TTU Aborted MS Thesis Research

This study was an attempt to compare 10 batches of a TDOT Class D with a 25% Class C fly ash substitution to other TDOT Class D and Class D-lower permeability (LP) mixtures. However, the fast track BS-MS student decided to pursue other opportunities and the study was abandoned. Future plans include more tests and comparisons with a TDOT Class D mixture with 25% Class C fly ash substitution at a later time.

#### **Other TTU SR Only Data Sets**

The soon to be published "TTU Effect of Supplementary Cementing Materials on Surface Resistivity Study" was an attempt to determine the effect of different SCM combinations on SR development from one to 91 days. Three sets of three cylinders each, as required by AASHTO TP 95-11, were fabricated for each PC-SCM combination studied. A summary of the SCM combinations used in the study as well as the origin of the mixture designs is shown in Table 4.6. The 28, 56, and 91-day results were also used in the current project to enhance predictions of later date SR values with earlier date SR results.

| Mixture  | Mixture<br>Design from<br>Project | % C ash | % F ash | % Slag | % SF | % MK | Sets |
|----------|-----------------------------------|---------|---------|--------|------|------|------|
| 20F      | Current                           | 0       | 20      | 0      | 0    | 0    | 3    |
| 25F      | SEFA 2013                         | 0       | 25      | 0      | 0    | 0    | 3    |
| 25C      | Aborted MS<br>Thesis              | 25      | 0       | 0      | 0    | 0    | 3    |
| 3.5SF20F | TDOT D-LP                         | 0       | 20      | 0      | 3.5  | 0    | 3    |
| 5SF25C   | TDOT Catalog                      | 25      | 0       | 0      | 5    | 0    | 3    |
| 3.5MK20F | TDOT D-LP                         | 0       | 20      | 0      | 0    | 3.5  | 3    |
| 5MK25C   | TDOT Catalog                      | 25      | 0       | 0      | 0    | 5    | 3    |
| 45SL     | TDOT D-LP                         | 0       | 0       | 45     | 0    | 0    | 3    |
| 35SL15F  | TDOT Catalog                      | 0       | 15      | 35     | 0    | 0    | 3    |
| 100PC    | New                               | 0       | 0       | 0      | 0    | 0    | 3    |
| 45SL5MK  | New                               | 0       | 0       | 45     | 0    | 5    | 3    |
| 35SL15MK | New                               | 0       | 0       | 35     | 0    | 15   | 3    |
| 50C      | TDOT HVFA                         | 50      | 0       | 0      | 0    | 0    | 3    |

 TABLE 4.6: Other TTU Surface Resistivity Only Data

# **CHAPTER 5 : RESULTS**

#### Validation Batch Results

Plastic and hardened properties of the validation mixtures are shown in Tables 5.1, 5.2, 5.3, and 5.4, respectively. Complete results for 28 and 56-day compressive strengths, 28 and 56-day static modulus of elasticity, and 56-day hardened concrete absorption after boiling are shown in Appendices A, B, C, D, and E, respectively.

### Validation Batch Data Quality

### **Plastic Properties**

The acceptable range of plastic properties was determined by obtaining the single operator standard deviation from AASHTO R-39 Section 9 and multiplying by an ASTM C 670 factor for number of test results. All plastic property test results met the acceptable precision criteria.

## Hardened Properties

The acceptable range was determined by first multiplying the test method multi-laboratory coefficient of variation (COV) by a factor from ASTM C 670 for the number of results. Finally, the product was multiplied by the mean result to obtain the allowable range. The multi-laboratory precision was used for 6x12 cylinders since AASHTO T 22 states that preparation of cylinders by different operators would probably increase the variation above multi-laboratory precision criteria. Single operator multi-batch precision was used for static modulus of elasticity since it was the only available precision criteria. All hardened property test results met the acceptable precision criteria.

| Batch #             | Before<br>HRWR<br>Slump<br>(inches) | After<br>HRWR<br>Slump<br>(inches) | Pressure<br>Method Air<br>Content (%) | Gravimetric<br>Air Content<br>(%) | Unit<br>weight<br>(pcf) | Temperature<br>(°F) |
|---------------------|-------------------------------------|------------------------------------|---------------------------------------|-----------------------------------|-------------------------|---------------------|
| D - 1               | 2.50                                | 7.75                               | 7.1                                   | 6.8                               | 141.9                   | 76                  |
| D - 2               | 2.50                                | 7.25                               | 6.9                                   | 6.1                               | 143.1                   | 76                  |
| D - 3               | 2.50                                | 7.75                               | 6.8                                   | 6.1                               | 143                     | 77                  |
| D - 4               | 1.75                                | 6.75                               | 6.4                                   | 5.7                               | 143.6                   | 78                  |
| D - 5               | 2.00                                | 7.25                               | 6.9                                   | 6.1                               | 143.1                   | 77                  |
| Mean                | 2.25                                | 7.35                               | 6.82                                  | 6.16                              | 142.91                  | 76.80               |
| Range               | 0.75                                | 1.0                                | 0.7                                   | 1.1                               | 1.7                     | 2.0                 |
| Acceptable<br>Range | 2.73                                | 2.73                               | 1.17                                  | 1.17                              | 3.15                    | Not available       |
| Meets?              | Yes                                 | Yes                                | Yes                                   | Yes                               | Yes                     |                     |

**TABLE 5.1: Plastic Property Results for TDOT Class D Validation Mixture** 

 TABLE 5.2: Plastic Property Results for the 50/35/15 Validation Mixture

| Batch #             | Before<br>HRWR<br>Slump<br>(inches) | After<br>HRWR<br>Slump<br>(inches) | Pressure<br>Method Air<br>Content (%) | Gravimetric<br>Air Content<br>(%) | Unit<br>weight<br>(pcf) | Temperature<br>(°F) |
|---------------------|-------------------------------------|------------------------------------|---------------------------------------|-----------------------------------|-------------------------|---------------------|
| S - 1               | 2.50                                | 6                                  | 6.6                                   | 6.0                               | 143.1                   | 71                  |
| S - 2               | 2.50                                | 7                                  | 7                                     | 6.8                               | 141.8                   | 71                  |
| S - 3               | 2.50                                | 6.75                               | 6.9                                   | 6.5                               | 142.3                   | 72                  |
| S - 4               | 2.50                                | 6.75                               | 6.6                                   | 6.0                               | 143                     | 72                  |
| S - 5               | 3.00                                | 7                                  | 6.8                                   | 6.6                               | 142.1                   | 71                  |
| Mean                | 2.60                                | 6.70                               | 6.78                                  | 6.39                              | 142.46                  | 71.4                |
| Range               | 0.5                                 | 1.0                                | 0.4                                   | 0.86                              | 1.3                     | 1.0                 |
| Acceptable<br>Range | 2.73                                | 2.73                               | 1.17                                  | 1.17                              | 3.15                    | Not available       |
| Meets?              | Yes                                 | Yes                                | Yes                                   | Yes                               | Yes                     |                     |

| Batch #    | Mean<br>28-Day<br>Compressive<br>Strength (psi) | Mean<br>56-Day<br>Compressive<br>Strength (psi) | Mean<br>28-Day Static<br>Modulus of<br>Elasticity (psi) | Mean<br>56-Day Static<br>Modulus of<br>Elasticity (psi) | Mean<br>56-Day<br>Absorption after<br>Boiling (%) |
|------------|-------------------------------------------------|-------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|
| D - 1      | 5160                                            | 5800                                            | 4350000                                                 | 4300000                                                 | 5.5                                               |
| D - 2      | 4930                                            | 5730                                            | 4250000                                                 | 4500000                                                 | 5.4                                               |
| D - 3      | 5080                                            | 5780                                            | 4400000                                                 | 4400000                                                 | 5.5                                               |
| D - 4      | 5440                                            | 6020                                            | 4350000                                                 | 4400000                                                 | 5.2                                               |
| D - 5      | 5380                                            | 6040                                            | 4300000                                                 | 4350000                                                 | 5.4                                               |
| Mean       | 5198                                            | 5874                                            | 4330000                                                 | 4390000                                                 | 5.40                                              |
| Range      | 510                                             | 310                                             | 150000                                                  | 200000                                                  | 0.3                                               |
| Acceptable | Max range of<br>19.5% of mean<br>= 1013         | Max range of<br>19.5% of mean<br>= 1145         | Max range of<br>19.5% of mean<br>= 844350               | Max range of<br>19.5% of mean<br>= 856050               | Not available                                     |
| Meets?     | Yes                                             | Yes                                             | Yes                                                     | Yes                                                     |                                                   |

**TABLE 5.3: Hardened Property Results for TDOT Class D Validation Mixture** 

 TABLE 5.4: Hardened Property Results for 50/35/15 Validation Mixture

| Batch #    | Mean<br>28-Day<br>Compressive<br>Strength (psi) | Mean<br>56-Day<br>Compressive<br>Strength (psi) | Mean<br>28-Day Static<br>Modulus of<br>Elasticity (psi) | Mean<br>56-Day Static<br>Modulus of<br>Elasticity (psi) | Mean<br>56-Day<br>Absorption after<br>Boiling (%) |
|------------|-------------------------------------------------|-------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|
| S - 1      | 6370                                            | 7100                                            | 4600000                                                 | 4550000                                                 | 5.5                                               |
| S - 2      | 6510                                            | 6970                                            | 4500000                                                 | 4750000                                                 | 5.3                                               |
| S - 3      | 6280                                            | 7130                                            | 4400000                                                 | 4700000                                                 | 5.5                                               |
| S - 4      | 6180                                            | 6730                                            | 4550000                                                 | 5000000                                                 | 5.6                                               |
| S - 5      | 6020                                            | 6810                                            | 4550000                                                 | Damaged                                                 | 5.3                                               |
| Mean       | 6272                                            | 6948                                            | 4520000                                                 | 4750000                                                 | 5.44                                              |
| Range      | 490                                             | 400                                             | 200000                                                  | 450000                                                  | 0.3                                               |
| Acceptable | Max range of<br>19.5% of mean<br>= 1223         | Max range of<br>19.5% of mean<br>= 1355         | Max range of<br>19.5% of mean<br>= 881400               | Max range of<br>18.0% of mean<br>= 855000*              | Not available                                     |
| Meets?     | Yes                                             | Yes                                             | Yes                                                     | Yes                                                     |                                                   |

\* - only 4 data points

### **SR-RCP Batch Results**

Plastic properties were not conducted on the SR-RCP batches. Compressive strength, SR, and RCP results for the Class D and 50/35/15 SR-RCP batches are shown in Tables 5.5 through 5.10. Complete data for SR-RCP batch compressive strengths are shown in Appendices F through I. Similarly, complete SR-RCP SR data is shown in Appendices J through M. Complete SR-RCP RCP data is shown in Appendices N through P. Tables 5.11 and 5.12 show SR and RCP results for batches that had to be redone due to testing problems. Complete RCP data for the redone batches is shown in Appendix Q. Similarly, complete SR data for redone batches is shown in Appendix R.

# **SR-RCP** Batch Data Quality

The acceptable range was determined by first multiplying the test method multi-laboratory COV by a factor from ASTM C 670 for number of results (the factor for 10 results was used since the table contained no higher values). Finally, the product was multiplied by the mean result to obtain the allowable range. The multi-laboratory precision was used since AASHTO T 22 states that preparation of cylinders by different operators would probably increase the variation above multi-laboratory precision criteria. All hardened property test results except 56-day compressive strength of TDOT Class D PCC met the acceptable range requirements. It is likely that the 56-day compressive strength of TDOT Class D PCC would have met the acceptable range if an ASTM C 670 factor for 20 test results was available or if AASHTO T 22 provided a multi-laboratory coefficient of variation for 4 x 8 cylinders.

| Batch #    | 28-Day<br>Compressive<br>Strength (psi) | 28-Day Accelerated<br>Compressive<br>Strength (psi) | 56-Day<br>Compressive<br>Strength (psi) | 91-Day<br>Compressive<br>Strength (psi) |
|------------|-----------------------------------------|-----------------------------------------------------|-----------------------------------------|-----------------------------------------|
| D-6        | 5490                                    | 6480                                                | 6140                                    | 7130                                    |
| D-7        | 5780                                    | 6990                                                | 6160                                    | 6800                                    |
| D-8        | 5270                                    | 6110                                                | 5850                                    | 6420                                    |
| D-9        | 5140                                    | 6100                                                | 5780                                    | 6470                                    |
| D – 10     | 5530                                    | 6520                                                | 6190                                    | 6900                                    |
| D – 11     | 5610                                    | 6480                                                | 6320                                    | 6930                                    |
| D – 12     | 5270                                    | 6100                                                | 5820                                    | 6740                                    |
| D – 13     | 5490                                    | 6410                                                | 6310                                    | 6830                                    |
| D – 14     | 5450                                    | 6300                                                | 6100                                    | 6740                                    |
| D – 15     | 5230                                    | 5740                                                | 5680                                    | 6350                                    |
| D – 16     | 5790                                    | 6510                                                | 6230                                    | 6980                                    |
| D – 17     | 6020                                    | 6860                                                | 6770                                    | 7100                                    |
| D – 18     | 5390                                    | 6350                                                | 6230                                    | 6650                                    |
| D – 19     | 5300                                    | 6060                                                | 6060                                    | 6610                                    |
| D - 20     | 5910                                    | 6870                                                | 6910                                    | 7210                                    |
| D – 21     | 5890                                    | 6890                                                | 6910                                    | 7340                                    |
| D – 22     | 4960                                    | 5850                                                | 5520                                    | 6060                                    |
| D – 23     | 5200                                    | 5710                                                | 5490                                    | 5980                                    |
| D – 24     | 5490                                    | 6240                                                | 5970                                    | 6600                                    |
| D – 25     | 4920                                    | 5630                                                | 5810                                    | 6120                                    |
| Mean       | 5457                                    | 6310                                                | 6113                                    | 6698                                    |
| Range      | 1100                                    | 1360                                                | 1420                                    | 1360                                    |
|            | Max range of                            | Max range of                                        | Max range of                            | Max range of                            |
| Acceptable | 22.5% of mean =                         | 22.5% of mean =                                     | 22.5% of mean =                         | 22.5% of mean =                         |
|            | 1228                                    | 1420                                                | 1375                                    | 1507                                    |
| Meets?     | Yes                                     | Yes                                                 | No                                      | Yes                                     |

TABLE 5.5: Compressive Strength Results for TDOT Class D Mixture SR-RCP Batches

| Batch #    | 28-Day<br>Compressive<br>Strength (psi) | 28-Day Accelerated<br>Compressive<br>Strength (psi) | 56-Day<br>Compressive<br>Strength (psi) | 91-Day<br>Compressive<br>Strength (psi) |
|------------|-----------------------------------------|-----------------------------------------------------|-----------------------------------------|-----------------------------------------|
| S – 6      | 6270                                    | 7080                                                | 6740                                    | 7150                                    |
| S – 7      | 6440                                    | 6950                                                | 6970                                    | 7040                                    |
| S – 8      | 6750                                    | 7310                                                | 6780                                    | 7220                                    |
| S – 9      | 6620                                    | 7270                                                | 6870                                    | 7450                                    |
| S – 10     | 6560                                    | 7680                                                | 7850                                    | 7410                                    |
| S – 11     | 6540                                    | 6860                                                | 7070                                    | 7390                                    |
| S – 12     | 7410                                    | 7890                                                | 7280                                    | 8080                                    |
| S – 13     | 7270                                    | 7820                                                | 7390                                    | 7810                                    |
| S – 14     | 6950                                    | 7310                                                | 7280                                    | 7450                                    |
| S – 15     | 7240                                    | 7570                                                | 7860                                    | 7800                                    |
| S – 16     | 7470                                    | 7160                                                | 7460                                    | 7630                                    |
| S – 17     | 6470                                    | 7410                                                | 6940                                    | 7120                                    |
| S – 18     | 7060                                    | 7750                                                | 7560                                    | 7530                                    |
| S – 19     | 6370                                    | 6840                                                | 7040                                    | 7230                                    |
| S – 20     | 6920                                    | 7320                                                | 7160                                    | 7530                                    |
| S – 21     | 7080                                    | 7600                                                | 7340                                    | 7760                                    |
| S – 22     | 7300                                    | 7760                                                | 7520                                    | 7820                                    |
| S – 23     | 7310                                    | 7760                                                | 7830                                    | 8120                                    |
| S – 24     | 7110                                    | 7650                                                | 7300                                    | 7800                                    |
| S – 25     | 6740                                    | 7800                                                | 7570                                    | 7760                                    |
| Mean       | 6894                                    | 7440                                                | 7291                                    | 7555                                    |
| Range      | 1200                                    | 1050                                                | 1120                                    | 1080                                    |
|            | Max range of                            | Max range of                                        | Max range of                            | Max range of                            |
| Acceptable | 22.5% of mean =                         | 22.5% of mean =                                     | 22.5% of mean =                         | 22.5% of mean =                         |
|            | 1551                                    | 1674                                                | 1640                                    | 1700                                    |
| Meets?     | Yes                                     | Yes                                                 | Yes                                     | Yes                                     |

TABLE 5.6: Compressive Strength Results for 50/35/15 Mixture SR-RCP Batches

| Batch #    | 28-Day Surface<br>Resistivity<br>(kilohm-cm) | 28-Day Accelerated<br>Surface Resistivity<br>(kilohm-cm) | 56-Day Surface<br>Resistivity<br>(kilohm-cm) | 91-Day Surface<br>Resistivity<br>(kilohm-cm) |
|------------|----------------------------------------------|----------------------------------------------------------|----------------------------------------------|----------------------------------------------|
| D-6        | 14.7                                         | 26.9                                                     | 18.7                                         | 27.7                                         |
| D-7        | 14.0                                         | 27.1                                                     | 17.7                                         | 27.1                                         |
| D-8        | 14.4                                         | 25.6                                                     | 20.3                                         | 25.7                                         |
| D-9        | 14.2                                         | 25.3                                                     | 18.9                                         | 24.1                                         |
| D - 10     | 13.6                                         | 24.9                                                     | 18.6                                         | 26.7                                         |
| D – 11     | 13.5                                         | 24.6                                                     | 18.3                                         | 27.1                                         |
| D – 12     | 14.4                                         | 24.9                                                     | 19.4                                         | 27.7                                         |
| D – 13     | 13.9                                         | 25.6                                                     | 18.6                                         | 26.4                                         |
| D – 14     | 13.6                                         | 25.9                                                     | 19.6                                         | 24.9                                         |
| D – 15     | 13.8                                         | 25.0                                                     | 21.2                                         | 24.9                                         |
| D – 16     | 13.3                                         | 25.2                                                     | 18.8                                         | 24.6                                         |
| D – 17     | 12.4                                         | 25.3                                                     | 17.5                                         | 21.9                                         |
| D – 18     | 13.8                                         | 24.0                                                     | 19.8                                         | 24.9                                         |
| D – 19     | 13.8                                         | 24.0                                                     | 20.0                                         | 25.3                                         |
| D - 20     | 13.7                                         | 22.4                                                     | 18.3                                         | 24.8                                         |
| D – 21     | 13.8                                         | 23.2                                                     | 18.4                                         | 24.9                                         |
| D – 22     | 13.3                                         | 21.5                                                     | 19.7                                         | 25.5                                         |
| D – 23     | 12.7                                         | 21.6                                                     | 19.3                                         | 23.3                                         |
| D - 24     | 14.3                                         | 23.4                                                     | 16.5                                         | 27.3                                         |
| D – 25     | 14.0                                         | 23.7                                                     | 16.7                                         | 25.7                                         |
| Mean       | 13.8                                         | 24.5                                                     | 18.8                                         | 25.5                                         |
| Range      | 2.3                                          | 5.6                                                      | 4.7                                          | 5.8                                          |
| Acceptable | Max range of 56.25% of mean                  | Max range of $56.25\%$ of mean =                         | Max range of 56.25% of mean                  | Max range of 56.25% of mean                  |
|            | = 1.1                                        | 13.7                                                     | = 10.5                                       | = 14.3                                       |
| Meets?     | Yes                                          | Yes                                                      | Yes                                          | Yes                                          |

TABLE 5.7: Surface Resistivity Results for TDOT Class D Mixture SR-RCP Batches

| Batch #    | 28-Day Surface<br>Resistivity<br>(kilohm-cm) | 28-Day Accelerated<br>Surface Resistivity<br>(kilohm-cm) | 56-Day Surface<br>Resistivity<br>(kilohm-cm) | 91-Day Surface<br>Resistivity<br>(kilohm-cm) |
|------------|----------------------------------------------|----------------------------------------------------------|----------------------------------------------|----------------------------------------------|
| S – 6      | 30.9                                         | 42.9                                                     | 40.4                                         | 46.5                                         |
| S – 7      | 31.4                                         | 44.1                                                     | 40.8                                         | 45.4                                         |
| S – 8      | 33.8                                         | 46.7                                                     | 45.0                                         | 53.9                                         |
| S – 9      | 32.6                                         | 44.6                                                     | 44.0                                         | 51.0                                         |
| S – 10     | 31.5                                         | 41.8                                                     | 50.2                                         | 50.7                                         |
| S – 11     | 31.8                                         | 42.4                                                     | 48.7                                         | 50.5                                         |
| S – 12     | 32.9                                         | 41.8                                                     | 47.2                                         | 64.7                                         |
| S – 13     | 29.4                                         | 41.3                                                     | 43.9                                         | 61.1                                         |
| S – 14     | 29.0                                         | 42.5                                                     | 39.3                                         | 50.8                                         |
| S – 15     | 29.6                                         | 41.7                                                     | 39.2                                         | 48.0                                         |
| S – 16     | 32.1                                         | 43.1                                                     | 43.5                                         | 49.2                                         |
| S – 17     | 29.9                                         | 44.0                                                     | 39.6                                         | 46.2                                         |
| S – 18     | 33.3                                         | 40.4                                                     | 47.1                                         | 51.5                                         |
| S – 19     | 32.0                                         | 42.9                                                     | 44.5                                         | 51.6                                         |
| S - 20     | 33.3                                         | 39.6                                                     | 43.2                                         | 51.9                                         |
| S – 21     | 32.3                                         | 39.0                                                     | 42.4                                         | 50.6                                         |
| S – 22     | 30.9                                         | 40.9                                                     | 39.6                                         | 46.6                                         |
| S – 23     | 30.3                                         | 39.3                                                     | 38.1                                         | 45.7                                         |
| S – 24     | 32.9                                         | 38.7                                                     | 42.1                                         | 55.6                                         |
| S – 25     | 31.4                                         | 39.8                                                     | 41.3                                         | 56.5                                         |
| Mean       | 31.6                                         | 41.9                                                     | 43.0                                         | 51.4                                         |
| Range      | 4.8                                          | 8.0                                                      | 12.1                                         | 19.3                                         |
| Acceptable | Max range of 56.25% of mean                  | Max range of 56.25% of mean =                            | Max range of 56.25% of mean                  | Max range of 56.25% of mean                  |
|            | = 17.7                                       | 23.5                                                     | = 24.1                                       | = 28.9                                       |
| Meets?     | Yes                                          | Yes                                                      | Yes                                          | Yes                                          |

TABLE 5.8: Surface Resistivity Results for 50/35/15 Mixture SR-RCP Batches

| Batch #    | 28-Day Accelerated<br>Rapid Chloride<br>Permeability<br>(Coulombs) | 56-Day Rapid<br>Chloride Permeability<br>(Coulombs) | 91-Day Rapid<br>Chloride Permeability<br>(Coulombs) |
|------------|--------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| D-6        | 1210                                                               | 3100                                                | 1830                                                |
| D-7        | 1180                                                               | 3140                                                | 1810                                                |
| D – 8      | 1390                                                               | 2940                                                | 1620                                                |
| D-9        | 1440                                                               | 3010                                                | 1690                                                |
| D – 10     | 1320                                                               | 2700                                                | 1680                                                |
| D – 11     | 1360                                                               | 2760                                                | 1680                                                |
| D – 12     | 1420                                                               | 2620                                                | 1630                                                |
| D – 13     | 1410                                                               | 2640                                                | 1740                                                |
| D – 14     | 1260                                                               | 2780                                                | 1570                                                |
| D – 15     | 1340                                                               | 2670                                                | 1500                                                |
| D – 16     | 1070                                                               | 2790                                                | 1560                                                |
| D – 17     | 1110                                                               | 2870                                                | 1890                                                |
| D – 18     | 1410                                                               | 2650                                                | 1800                                                |
| D – 19     | 1480                                                               | 2690                                                | 1840                                                |
| D - 20     | 1210                                                               | 2780                                                | 1730                                                |
| D – 21     | 1130                                                               | 2760                                                | 1660                                                |
| D – 22     | 1620                                                               | 3170                                                | 2410                                                |
| D – 23     | 1480                                                               | 2720                                                | 2180                                                |
| D-24       | 1370                                                               | 2800                                                | 1630                                                |
| D-25       | 1420                                                               | 2700                                                | 1810                                                |
| Mean       | 1332                                                               | 2815                                                | 1763                                                |
| Range      | 550                                                                | 550                                                 | 910                                                 |
| Acceptable | Max range of 81% of<br>mean = 1078                                 | Max range of 81% of<br>mean = 2280                  | Max range of 81% of<br>mean = 1428                  |
| Meets?     | Yes                                                                | Yes                                                 | Yes                                                 |

TABLE 5.9: Rapid Chloride Permeability Results for TDOT Class D Mixture SR-RCP Batches

| Batch #    | 28-Day Accelerated<br>Rapid Chloride<br>Permeability (Coulombs) | 56-Day Rapid<br>Chloride Permeability<br>(Coulombs) | 91-Day Rapid<br>Chloride Permeability<br>(Coulombs) |
|------------|-----------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| S - 6      | 570                                                             | 850                                                 | 710                                                 |
| S – 7      | 570                                                             | 810                                                 | 690                                                 |
| S – 8      | 590                                                             | 870                                                 | 660                                                 |
| S – 9      | 600                                                             | 910                                                 | 670                                                 |
| S – 10     | 620                                                             | 840                                                 | 700                                                 |
| S – 11     | 610                                                             | 850                                                 | 720                                                 |
| S – 12     | 620                                                             | 890                                                 | 620                                                 |
| S – 13     | 660                                                             | 830                                                 | 540                                                 |
| S – 14     | 620                                                             | 860                                                 | 550                                                 |
| S – 15     | 640                                                             | 850                                                 | 470                                                 |
| S – 16     | 600                                                             | 830                                                 | 680                                                 |
| S – 17     | 620                                                             | 900                                                 | 650                                                 |
| S – 18     | 620                                                             | 930                                                 | 720                                                 |
| S – 19     | 630                                                             | 930                                                 | 650                                                 |
| S - 20     | 650                                                             | 920                                                 | 690                                                 |
| S – 21     | 700                                                             | 980                                                 | 630                                                 |
| S – 22     | 640                                                             | 900                                                 | 740                                                 |
| S – 23     | 640                                                             | 950                                                 | 650                                                 |
| S – 24     | 680                                                             | 890                                                 | 710                                                 |
| S – 25     | 660                                                             | 900                                                 | 670                                                 |
| Mean       | 627                                                             | 885                                                 | 656                                                 |
| Range      | 130                                                             | 170                                                 | 270                                                 |
| Acceptable | Max range of 81% of<br>mean = 507                               | Max range of 81% of<br>mean = 716                   | Max range of 81% of<br>mean = 531                   |
| Meets?     | Yes                                                             | Yes                                                 | Yes                                                 |

TABLE 5.10: Rapid Chloride Permeability Results for 50/35/15 Mixture SR-RCP Batches

| Batch #        | 28-Day Accelerated<br>Surface Resistivity<br>(kilohm-cm) | 56-Day Surface<br>Resistivity (kilohm-cm) | 91-Day Surface<br>Resistivity (kilohm-cm) |
|----------------|----------------------------------------------------------|-------------------------------------------|-------------------------------------------|
| D-22A          | 23.6                                                     | Problem                                   | 25.4                                      |
| D – 23A        | 22.4                                                     | Problem                                   | 25.2                                      |
| D – 22B        | 20.7                                                     | Problem                                   | Discarded                                 |
| D – 23B        | 20.0                                                     | Problem                                   | Discarded                                 |
| S – 12A        | Problem                                                  | 45.8                                      | 52.9                                      |
| S – 13A        | Problem                                                  | 45.4                                      | 52.6                                      |
| <u>S</u> – 14A | Problem                                                  | 38.7                                      | 46.3                                      |
| S – 15A        | Problem                                                  | 37.5                                      | 44.8                                      |

TABLE 5.11: Surface Resistivity Results for SR-RCP Redo Batches

TABLE 5.12: Rapid Chloride Permeability Results for SR-RCP Redo Batches

| Batch #        | 28-Day Accelerated<br>Rapid Chloride<br>Permeability<br>(Coulombs) | 56-Day Rapid Chloride<br>Permeability<br>(Coulombs) | 91-Day Rapid Chloride<br>Permeability<br>(Coulombs) |
|----------------|--------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| D-22A          | 1400                                                               | Problem                                             | 1760                                                |
| D – 23A        | 1480                                                               | Problem                                             | 1780                                                |
| D – 22B        | 1710                                                               | Problem                                             | Discarded                                           |
| D – 23B        | 1650                                                               | Problem                                             | Discarded                                           |
| S – 12A        | Problem                                                            | 840                                                 | 730                                                 |
| S – 13A        | Problem                                                            | 850                                                 | 740                                                 |
| <u>S</u> – 14A | Problem                                                            | 860                                                 | 700                                                 |
| <u>S</u> – 15A | Problem                                                            | 840                                                 | 710                                                 |

# **Other SR and RCP Results**

Other SR and RCP results for the unpublished TDOT Class D with 25% C, Slag-Fly Ash, and Aggregate Variable studies are shown in Tables 5.13 through 5.16. The entire data set for these studies are shown in Appendices S through Z.

# **Other SR and RCP Data Quality**

The unpublished TTU TDOT Class D with 25% Class C fly ash contained enough batches of the same mixture to thoroughly evaluate the data quality. The other unpublished TTU studies

contained too few batches of each mixture to evaluate data quality. As before, the acceptable range was determined by first multiplying the test method multi-laboratory COV by a factor from ASTM C 670 for the number of results. Finally, this product was multiplied by the mean result to obtain the allowable range. All SR and RCP results for the unpublished TTU TDOT Class D with 25% C met the acceptable range requirements.

| Mixture / Batch # | 56-Day Surface<br>Resistivity<br>(kilohm-cm) | 91-Day<br>Surface<br>Resistivity<br>(kilohm-cm) | 56-Day Rapid<br>Chloride<br>Permeability<br>(Coulombs) | 91-Day Rapid<br>Chloride<br>Permeability<br>(Coulombs) |
|-------------------|----------------------------------------------|-------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| TDOT D 25C - 1    | 21.3                                         | 28.6                                            | 2610                                                   | 1700                                                   |
| TDOT D 25C – 2    | 20.3                                         | 25.3                                            | 3080                                                   | 1940                                                   |
| TDOT D 25C – 3    | 20.9                                         | 27.3                                            | 2480                                                   | 1790                                                   |
| TDOT D 25C – 4    | 20.7                                         | 27.5                                            | 2640                                                   | 1720                                                   |
| TDOT D 25C – 5    | 20.8                                         | 28.8                                            | 2470                                                   | 1990                                                   |
| TDOT D 25C – 6    | 18.7                                         | 25.5                                            | 2630                                                   | 1950                                                   |
| TDOT D 25C – 7    | No RCP for Pair                              | 21.6                                            | Power Outage                                           | 1780                                                   |
| TDOT D 25C – 8    | No RCP for Pair                              | 22.5                                            | Power Outage                                           | 2010                                                   |
| TDOT D 25C - 9    | 22.2                                         | 25.0                                            | 2990                                                   | 2150                                                   |
| TDOT D 25C - 10   | 21.7                                         | 25.2                                            | 2790                                                   | 2160                                                   |
| Mean              | 20.8                                         | 25.7                                            | 2711                                                   | 1919                                                   |
| Range             | 3.5                                          | 7.2                                             | 610                                                    | 460                                                    |
| Acceptable        | Max range<br>of 53.75% of<br>mean = 11.1     | Max range<br>of 56.25% of<br>mean = 14.4        | Max range<br>of 77.4% of<br>mean = 2098                | Max range<br>of 81% of<br>mean = 1554                  |
| Meets?            | Yes                                          | Yes                                             | Yes                                                    | Yes                                                    |

TABLE 5.13: Surface Resistivity and Rapid Chloride Permeability Results from the<br/>Unpublished TTU Class D 25%C Study

| Mixture / Batch # | 56-Day<br>Surface<br>Resistivity<br>(kilohm-cm) | 91-Day<br>Surface<br>Resistivity<br>(kilohm-cm) | 56-Day Rapid<br>Chloride<br>Permeability<br>(Coulombs) | 91-Day Rapid<br>Chloride<br>Permeability<br>(Coulombs) |
|-------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| 50/25/25F - 1     | 59.0                                            | 67.7                                            | 650                                                    | 470                                                    |
| 50/25/25F - 2     | 56.9                                            | 65.6                                            | 620                                                    | 440                                                    |
| 50/30/20F - 1     | 52.0                                            | 61.0                                            | 630                                                    | 480                                                    |
| 50/30/20F - 2     | 52.8                                            | 60.9                                            | 650                                                    | 510                                                    |
| 50/35/15F – 1     | 52.6                                            | 67.8                                            | 740                                                    | 570                                                    |
| 50/35/15F - 2     | 55.7                                            | 67.6                                            | 680                                                    | 600                                                    |
| 50/25/25C - 1     | 44.4                                            | 54.9                                            | 1050                                                   | 800                                                    |
| 50/25/25C - 2     | 43.5                                            | 53.7                                            | 1040                                                   | 840                                                    |
| 50/30/20C - 1     | 40.1                                            | 43.3                                            | 1060                                                   | 950                                                    |
| 50/30/20C - 2     | 39.7                                            | 43.3                                            | 1000                                                   | 890                                                    |
| 50/35/15C – 1     | 50.0                                            | 54.5                                            | 950                                                    | 850                                                    |
| 50/35/15C - 2     | 46.9                                            | 59.0                                            | 930                                                    | 820                                                    |

 

 TABLE 5.14: Surface Resistivity and Rapid Chloride Permeability Results from the Unpublished TTU Slag-Fly Ash Study

| Mixture / Batch #       | 56-Day Surface Resistivity<br>(kilohm-cm) | 56-Day Rapid Chloride<br>Permeability (Coulombs) |
|-------------------------|-------------------------------------------|--------------------------------------------------|
| 80/20 Sand Variable - 1 | 27.3                                      | 1840                                             |
| 80/20 Sand Variable - 2 | 25.9                                      | 2030                                             |
| 80/20 LSCA1 – 1         | 19.1                                      | 2470                                             |
| 80/20 LSCA1 - 2         | 20.8                                      | 2540                                             |
| 80/20 GRCA1 – 1         | 12.5                                      | 4870                                             |
| 80/20 GRCA1 - 2         | 11.0                                      | 5010                                             |
| 80/20 GRCA2 – 1         | 12.9                                      | 4430                                             |
| 80/20 GRCA2 - 2         | 11.9                                      | 3880                                             |
| 80/20 LSCA2 – 1         | 18.7                                      | 2300                                             |
| 80/20 LSCA2 - 2         | 18.5                                      | 2810                                             |
| 80/20 LSCA3 – 1         | 23.2                                      | 2220                                             |
| 80/20 LSCA3 - 2         | 22.0                                      | 2470                                             |
| 80/20 LSCA4 – 1         | 20.7                                      | 2450                                             |
| 80/20 LSCA4 - 2         | 20.3                                      | 2620                                             |
| 80/20 LSCA5 – 1         | 19.8                                      | 2340                                             |
| 80/20 LSCA5 - 2         | 20.8                                      | 2580                                             |
| 100PC GRCA1 – 1         | 12.7                                      | 4150                                             |
| 100PC GRCA1 - 2         | 11.1                                      | 4130                                             |
| 100PC GRCA1 - 3         | 11.1                                      | 4240                                             |
| 100PC GRCA2 - 1         | 9.4                                       | 4650                                             |
| 100PC GRCA2 - 2         | 10.0                                      | 4950                                             |
| 100PC GRCA2 - 3         | 10.8                                      | 4520                                             |
| 100PC GRCA2 - 4         | 10.0                                      | 5150                                             |

TABLE 5.15: Surface Resistivity and Rapid Chloride Permeability Results from the<br/>Unpublished TTU Aggregate Study

 

 TABLE 5.16: Accelerated Surface Resistivity and Rapid Chloride Permeability Results from the Unpublished TTU Aggregate Study

| Mixture / Batch # | 28-Day Accelerated Surface<br>Resistivity (kilohm-cm) | 28-Day Accelerated Rapid<br>Chloride Permeability<br>(Coulombs) |
|-------------------|-------------------------------------------------------|-----------------------------------------------------------------|
| 100PC GRCA1 – 1   | 9.3                                                   | 4110                                                            |
| 100PC GRCA1 - 2   | 9.9                                                   | 3870                                                            |
| 100PC GRCA1 - 3   | 9.6                                                   | 4140                                                            |

## **Other SR Only Results**

Available SR results for the as of yet unpublished "TTU Effect of Supplementary Cementing Materials on Surface Resistivity Study" are shown in Tables 5.17 through 5.19. The complete data for these studies are shown in Appendices AA through AC.

## **Other SR Only Data Quality**

The as of yet unpublished "TTU Effect of Supplementary Cementing Materials on Surface Resistivity Study" contained only three batches of each mixture. The authors felt this was sufficient to evaluate the data's quality. As before, the acceptable range was determined by first multiplying the test method multi-laboratory COV by a factor from ASTM C 670 for number of results. Finally, the product was multiplied by the mean result to obtain the allowable range. All SR results for as of yet unpublished "TTU Effect of Supplementary Cementing Materials on Surface Resistivity Study" met the acceptable range requirements.

|          |                                      |                                      | Biddy                                |                                   | -                                                     |        |
|----------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|-------------------------------------------------------|--------|
| Mixture  | Batch 1<br>Result<br>(kilohm-<br>cm) | Batch 2<br>Result<br>(kilohm-<br>cm) | Batch 3<br>Result<br>(kilohm-<br>cm) | Mean<br>Result<br>(kilohm-<br>cm) | Acceptable<br>Range =<br>0.4125 * Mean<br>(kilohm-cm) | Meets? |
| 20F      | 12.4                                 | 13.0                                 | 13.2                                 | 12.9                              | 5.3                                                   | Yes    |
| 25F      | 14.1                                 | 14.3                                 | 14.0                                 | 14.1                              | 5.8                                                   | Yes    |
| 25C      | 12.5                                 | 12.8                                 | 12.7                                 | 12.7                              | 5.2                                                   | Yes    |
| 3.5SF20F | 27.5                                 | 28.1                                 | 28.4                                 | 28.0                              | 11.5                                                  | Yes    |
| 5SF25C   | 31.1                                 | 30.3                                 | 29.3                                 | 30.2                              | 12.4                                                  | Yes    |
| 3.5MK20F | 30.9                                 | 29.7                                 | 29.3                                 | 30.0                              | 12.3                                                  | Yes    |
| 5MK25C   | 33.1                                 | 33.1                                 | 32.8                                 | 33.0                              | 13.6                                                  | Yes    |
| 45SL     | 29.9                                 | 30.9                                 | 32.7                                 | 31.2                              | 12.8                                                  | Yes    |
| 35SL15F  | 31.8                                 | 31.8                                 | 30.6                                 | 31.4                              | 12.9                                                  | Yes    |
| 100PC    | 12.3                                 | 11.5                                 | 12.0                                 | 11.9                              | 4.9                                                   | Yes    |
| 45SL5MK  | 101.4                                | 100.5                                | 101.1                                | 101.0                             | 41.6                                                  | Yes    |
| 35SL15MK | 139.7                                | 137.9                                | 139.7                                | 139.1                             | 57.3                                                  | Yes    |
| 50C      | 13.1                                 | 13.0                                 | 12.6                                 | 12.9                              | 5.3                                                   | Yes    |

TABLE 5.17: 28-day Surface Resistivity Results for the Unpublished Effect of SCM on SR Study

TABLE 5.18: 56-day Surface Resistivity Results for the Unpublished Effect of SCM on SR Study

| Mixture  | Batch 1<br>Result<br>(kilohm-<br>cm) | Batch 2<br>Result<br>(kilohm-<br>cm) | Batch 3<br>Result<br>(kilohm-<br>cm) | Mean<br>Result<br>(kilohm-<br>cm) | Acceptable<br>Range =<br>0.4125 * Mean<br>(kilohm-cm) | Meets? |
|----------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|-------------------------------------------------------|--------|
| 20F      | 17.7                                 | 18.1                                 | 17.9                                 | 17.9                              | 7.3                                                   | Yes    |
| 25F      | 22.1                                 | 22.5                                 | 22.1                                 | 22.2                              | 9.1                                                   | Yes    |
| 25C      | 17.8                                 | 18.2                                 | 18.0                                 | 18.0                              | 7.4                                                   | Yes    |
| 3.5SF20F | 43.3                                 | 44.8                                 | 45.0                                 | 44.4                              | 18.3                                                  | Yes    |
| 5SF25C   | 53.2                                 | 50.3                                 | 49.1                                 | 50.9                              | 20.9                                                  | Yes    |
| 3.5MK20F | 40.1                                 | 37.7                                 | 37.3                                 | 38.4                              | 15.8                                                  | Yes    |
| 5MK25C   | 41.5                                 | 41.0                                 | 40.6                                 | 41.0                              | 16.9                                                  | Yes    |
| 45SL     | 35.9                                 | 36.9                                 | 38.0                                 | 36.9                              | 15.2                                                  | Yes    |
| 35SL15F  | 45.2                                 | 45.1                                 | 44.1                                 | 44.8                              | 18.4                                                  | Yes    |
| 100PC    | 14.6                                 | 13.3                                 | 14.0                                 | 14.0                              | 5.7                                                   | Yes    |
| 45SL5MK  | 114.2                                | 114.2                                | 115.8                                | 114.7                             | 47.3                                                  | Yes    |
| 35SL15MK | 172.2                                | 172.7                                | 177.6                                | 174.2                             | 71.8                                                  | Yes    |
| 50C      | 22.6                                 | 21.8                                 | 21.4                                 | 21.9                              | 9.0                                                   | Yes    |

|          |                                      |                                      | Biddy                                |                                   |                                                       |        |
|----------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|-------------------------------------------------------|--------|
| Mixture  | Batch 1<br>Result<br>(kilohm-<br>cm) | Batch 2<br>Result<br>(kilohm-<br>cm) | Batch 3<br>Result<br>(kilohm-<br>cm) | Mean<br>Result<br>(kilohm-<br>cm) | Acceptable<br>Range =<br>0.4125 * Mean<br>(kilohm-cm) | Meets? |
| 20F      | 29.2                                 | 29.3                                 | 28.5                                 | 29.0                              | 11.9                                                  | Yes    |
| 25F      | 36.0                                 | 34.9                                 | 34.9                                 | 35.3                              | 14.5                                                  | Yes    |
| 25C      | 27.9                                 | 28.3                                 | 28.0                                 | 28.1                              | 11.5                                                  | Yes    |
| 3.5SF20F | 58.1                                 | 59.3                                 | 59.7                                 | 59.0                              | 24.3                                                  | Yes    |
| 5SF25C   | 70.5                                 | 66.1                                 | 64.4                                 | 67.0                              | 27.6                                                  | Yes    |
| 3.5MK20F | 51.0                                 | 49.1                                 | 47.2                                 | 49.1                              | 20.2                                                  | Yes    |
| 5MK25C   | 50.7                                 | 49.1                                 | 48.6                                 | 49.5                              | 20.4                                                  | Yes    |
| 45SL     | 44.1                                 | 45.3                                 | 47.9                                 | 45.8                              | 18.8                                                  | Yes    |
| 35SL15F  | 55.0                                 | 55.0                                 | 53.3                                 | 54.4                              | 22.4                                                  | Yes    |
| 100PC    | 17.8                                 | 16.3                                 | 16.7                                 | 16.9                              | 6.9                                                   | Yes    |
| 45SL5MK  | 127.8                                | 124.4                                | 125.5                                | 125.9                             | 51.9                                                  | Yes    |
| 35SL15MK | 196.8                                | 197.3                                | 205.3                                | 199.8                             | 82.4                                                  | Yes    |
| 50C      | 34.3                                 | 31.5                                 | 31.6                                 | 32.5                              | 13.4                                                  | Yes    |

TABLE 5.19: 91-day Surface Resistivity Results for the Unpublished Effect of SCM on SR Study

# **Previous TDOT RCP Results**

RCP results from previous TDOT projects are shown in Table 5.20. The complete RCP

data set for these studies are shown in Appendices AD through AG.

| Project         | Mixture          | Batches x<br>Specimens | Mean<br>Value | COV<br>(%) | Range<br>(Coulombs) | Meets COV or Range<br>Requirements? |
|-----------------|------------------|------------------------|---------------|------------|---------------------|-------------------------------------|
| RES<br>2010-007 | Class D<br>20% F | 50 x 2                 | 1536          | 11.0       | NA                  | Yes COV                             |
| RES 2010-035    | Class D<br>20% F | 10 x 2                 | 1220          | 4.9        | 200                 | Yes Both                            |
| RES 2011-09     | 45% SL           | 10 x 3                 | 813           | 8.0        | 200                 | Yes Both                            |
| RES<br>2011-09  | 20% F<br>3.5% SF | 10 x 3                 | 788           | 6.2        | 150                 | Yes Both                            |
| RES<br>2011-09  | 20% F<br>3.5% MK | 10 x 3                 | 744           | 7.5        | 190                 | Yes Both                            |
| RES<br>2013-11  | 25% C 5%<br>SF   | 11 x 3                 | 521           | 14.0       | 220                 | Yes Range                           |
| RES<br>2013-11  | 25% C 5%<br>MK   | 11 x 3                 | 766           | 3.2        | 70                  | Yes Both                            |
| RES<br>2013-11  | 35% SL<br>15% F  | 11 x 3                 | 780           | 5.7        | 150                 | Yes Both                            |
| RES 2013-11     | 35% F 3%<br>MK   | 11 x 3                 | 899           | 6.0        | 150                 | Yes Both                            |

 TABLE 5.20: Comparison RCP Values from Previous TDOT Projects

# **CHAPTER 6 : ANALYSIS OF RESULTS**

## **TDOT Specification Compliance**

All validation batch plastic properties (see Tables 5.1 and 5.2) met TDOT Class D PCC requirements. Similarly, all validation batch compressive strengths (see Tables 5.3 and 5.4) met TDOT Class D PCC requirements. Finally, all SR-RCP batch compressive strengths (see Tables 5.5 and 5.6) met TDOT Class D PCC requirements.

## **Comparison with Previous TDOT Project RCP Results**

The current TDOT Class D results at 56 days (Table 5.9) were compared with the Class D 56-day results from RES 2010-007 since the mixture designs for these mixtures were very similar. Similarly, the current TDOT Class D results at 91 days (Table 5.9) were compared with the Class D 91-day results from RES 2010-035. The current 56-day 50/35/15 results (Table 5.10) were compared with the 56-day results of the 50/35/15 mixture from RES 2013-11 since the mixture designs were very similar. The current 56-day 50/35/15 results (Table 5.10) were also compared with the 56-day results of the 45% slag mixture from RES 2011-09. Current results were not statistically compared with the mixtures containing silica fume or metakaolin from Table 5.20. The results from all the above comparisons is presented in Table 6.1.

| <b>Concrete Mixes Compared</b>     | T statistic | Interpretation of Test Result      |
|------------------------------------|-------------|------------------------------------|
| Current TDOT Class D at 56 days    |             | Mean RCP for current TDOT          |
| (Table 5.9) compared to TDOT       |             | Class D mix at 56 days is          |
| Class D at 56 days from RES 2010-  | 28.50       | significantly higher than the mean |
| 007                                |             | RCP of mix in RES 2010-007 at      |
|                                    |             | 56 days                            |
| Current TDOT Class D at 91 days    |             | Mean RCP for current TDOT          |
| (Table 5.9) compared to TDOT       |             | Class D mix at 91 days is          |
| Class D at 91 days from RES 2010-  | 10.60       | significantly higher than the mean |
| 035                                |             | RCP of mix in RES 2010-035 at      |
|                                    |             | 91 days                            |
| Current 50/35/15 at 56 days (Table |             | Mean RCP for current 50/35/15      |
| 5.10) compared to 50/35/15 at 56   |             | mix at 56 days is significantly    |
| days from RES 2013-11              | 15.06       | higher than the mean RCP of        |
|                                    |             | 50/35/15 mix in RES 2013-11 at     |
|                                    |             | 56 days                            |
| Current 50/35/15 at 56 days (Table |             | Mean RCP for current 50/35/15      |
| 5.10) compared to 45% slag         |             | mix at 56 days is significantly    |
| mixture at 56 days from RES 2011-  | 3.12        | higher than the mean RCP of the    |
| 09                                 |             | 45% slag mix in RES 2011-09 at     |
|                                    |             | 56 days                            |

| TABLE 6.1: Statistical Con | parisons with Results from | I Previous TDOT Projects |
|----------------------------|----------------------------|--------------------------|
|----------------------------|----------------------------|--------------------------|

# **SR-RCP** Correlations

Figures 6.1 through 6.3 show SR-RCP correlations for all available results, for normally cured results, and for results of samples moist cured in an accelerated manner, respectively. For comparison, the results based on some equations found in the literature are provided on each plot. Tables 6.2 through 6.4 display SR-RCP statistical analysis for all available results, for normally cured results, and for results from samples moist cured in an accelerated manner, respectively. A discussion of these results is provided below.

## Statistical Analysis of SR-RCP Correlations

## TTU RCP Data and AASHTO RCP Equation

To judge how well the AASHTO equation represents the data generation process for the TTU Data, the RCP values of the TTU Data were regressed on corresponding RCP data values

generated by the AASHTO equation with SR values as input. If the AASHTO equation predicts RCP values that are identical to the observed TTU RCP Data, then the simple linear model will have an intercept with a value of 0 and a slope of value 1. Significant deviations from these two parameter values would be indicative of the AASHTO equation giving RCP predictions that differ from the observed TTU RCP data. The least squares regression line obtained was TTU RCP = 46.776 + 1.016 AASHTO RCP (R<sup>2</sup> = 0.89). The t-statistic for the test of the null hypothesis of the estimated intercept being 0 was 0.99 while that for the test of the slope being 1 was 0.62. Based on these results, the intercept is not significantly different from 0 while the slope is not significantly different from 1. The intercept term was thus constrained to a value of 0, which yielded an equation TTU RCP = 1.037 AASHTO RCP ( $R^2 = 0.96$ ). The t-test was then used to test the null hypothesis of the slope parameter being equal to 1. Using a five percent level of significance, the estimated coefficient of the AASHTO RCP values was significantly different from 1 (see Table 6.2), indicating that the AASHTO equation does not perfectly represent the data generation process responsible for generating the TTU data. On average, the TTU RCP data were 3.7% greater than those given by the AASHTO equation.

More directly, the estimated parameters of the TTU RCP Data model (shown in Figure 6.1) were compared to the parameters of the AASHTO RCP equation (also shown in Figure 6.1) to determine whether or not corresponding model parameters were statistically equal. Note that each equation is a power function of the form  $cx^p$  where c is a coefficient, p is the power, and x is the variable. T-tests were performed on the parameters, that is, c and p. For the tests, the AASHTO model parameters were treated as non-random. The hypothesis of equality of corresponding model parameters was rejected at the five percent level of significance (the t-statistic for the equality of the coefficient c in both equations was 2.175 while that for the power p was 2.092).

#### TTU RCP Data and FHWA Tech Brief Equation

To judge how well the FHWA Tech Brief equation represents the data generation process for the TTU Data, the RCP values of the TTU Data were regressed on corresponding RCP data values generated by the FHWA Tech Brief equation with SR values as input and this yielded the equation TTU RCP = 251.044 + 1.109 FHWA RCP (R<sup>2</sup> = 0.87). The t-statistic for the test of the null hypothesis of the estimated intercept being 0 was 5.50 while that for the test of the slope being 1 was 3.68. Based on these results, the intercept is significantly different from 0 and the slope is significantly different from 1. With the intercept term exceeding 0 and the slope also exceeding 1, it is indicative of the TTU RCP values on average being higher than the corresponding RCP values given by the FHWA Tech Brief equation.

Given that the intercept is significantly different from 0, by what percentage the observed TTU RCP data are on average larger or smaller than those yielded by the FHWA Tech Brief equation is determined as follows:

The general linear relationship between the observed TTU RCP data and the predicted values is given by the equation:

$$TTU RCP = \alpha_0 + \alpha_1 FHWA RCP$$
(1)

Were the predicted RCP values to be identical to the observed RCP values then the estimated value of  $\alpha_0$  would not be significantly different from 0 while the estimated value of  $\alpha_1$  would not be significantly different from 1. This was not the case above. Therefore, the difference between corresponding RCP values is:

TTU RCP - FHWA RCP = 
$$\alpha_0 + \alpha_1$$
FHWA RCP - FHWA RCP (2)

Expressing the difference in values as a percentage yields:

$$\left(\frac{(\text{TTURCP} - \text{FHWARCP}) \times 100}{\text{TTURCP}}\right) = \left(\frac{[\alpha_0 + (\alpha_1 - 1)\text{FHWARCP} \times 100]}{\text{TTURCP}}\right) (3)$$

47

Since the mean difference between the two sets of values expressed as a percentage is sought, the expected value of Equation (3) is taken yielding:

$$E\left(\frac{(\text{TTURCP} - \text{FHWARCP}) \times 100}{\text{TTURCP}}\right) = E\left(\frac{[\alpha_0 + (\alpha_1 - 1)\text{FHWARCP} \times 100]}{\text{TTURCP}}\right)$$
(4)

Applying Equation (4) showed that the RCP predictions given by the FHWA Tech Brief equation were on average 24% lower than the observed TTU RCP data.

More directly, the estimated parameters of the TTU Data model (shown in Figure 6.1) were compared to the parameters of the FHWA Tech Brief equation (shown in Figure 6.1) to determine whether or not corresponding model parameters were statistically equal. Note that each equation is a power function ( $cx^p$  where c is a coefficient, p is the power, and x is the variable). T-tests were performed on the parameters c and p. For the tests, the FHWA Tech Brief model parameters were treated as non-random. The hypothesis of equality of the power parameter p was rejected at the five percent level of significance (t-statistic was 2.572). However, that of the coefficient c was not rejected (t-statistic was 0.109). Rejection of the null hypothesis of equality identical.

## TTU Data and LRTC Equation

To judge how well the LRTC equation represents the data generation process for the TTU Data, the RCP values of the TTU Data were regressed on corresponding RCP data values generated by the LRTC equation with SR values as input and this yielded the equation TTU RCP = -474.637 + 1.582 LTRC RCP (R<sup>2</sup> = 0.90). The t-statistic for the test of the null hypothesis of the estimated intercept being 0 was -8.65 while that for the test of the hypothesis of the slope being 1 was 15.65. Based on these results, the intercept is significantly different from 0 and the slope is significantly different from 1.

After making the appropriate changes to Equation (4) and applying it to this context showed that the RCP predictions given by the LTRC equation were on average 18% lower than the observed TTU RCP data.

More directly, the estimated parameters of the TTU Data model (shown in Figure 6.1) were compared to the parameters of the LRTC equation (shown in Figure 6.1) to determine whether or not corresponding model parameters were statistically equal. Again, note that each equation is a power function of the form  $cx^p$  where c is a coefficient, p is the power, and x is the variable. The t-test was used, and for it, the LRTC model parameters were treated as non-random. The hypothesis of equality of corresponding model parameters was rejected at the five percent level of significance for both parameters c and p (t-statistic for the test of equality of the coefficient was 11.425 while that for the test of the equality of the power was 10.577) indicating that the two equations are not statistically identical.

## AASHTO Equation and FHWA Tech Brief Equation

To determine the degree of similarity between the RCP values given by the AASHTO equation and the RCP values given by the FHWA Tech Brief equation, SR values were input into both equations to yield corresponding values of RCP. The RCP values given by the AASHTO equation were then regressed on the RCP values given by the FHWA Tech Brief equation. This yielded the equation AASHTO RCP = 192.955 + 1.095 FHWA RCP (R<sup>2</sup> = 0.998). The t-statistic for the test of the null hypothesis of the estimated intercept being 0 was 38.829 while that for the test of the hypothesis of the slope being 1 was 30.448. Based on these results, the intercept is significantly different from 0 and the slope is significantly different from 1. With the intercept term far exceeding 0 and the slope also exceeding 1, it is indicative of the RCP values given by

the AASHTO equation on average being greater than the corresponding RCP values given by the FHWA Tech Brief equation.

After making the appropriate changes to Equation (4) and applying it to this context showed that the RCP predictions given by the FHWA Tech Brief equation were on average 20% lower than the RCP predictions given by the AASHTO equation.

#### **AASHTO Equation and LRTC Equation**

To determine the degree of similarity between the RCP values given by the AASHTO equation and by the LRTC equation, SR values were input into both equations to yield corresponding values of RCP. A linear regression analysis was performed between the RCP values given by the AASHTO equation and the RCP values given by the LRTC equation, which yielded the equation: AASHTO RCP = -491.674 + 1.541 LTRC RCP (R<sup>2</sup> = 0.994). The t-statistic for the test of the null hypothesis of the estimated intercept being 0 was -39.412 while that for the test of the null hypothesis of the slope being 1 was 63.999. Based on these t-test results, the intercept is significantly different from 0 and the slope is significantly different from 1.

After making the appropriate changes to Equation (4) and applying it to this context showed that the RCP predictions given by the LRTC equation were on average about 15% lower than the RCP predictions given by the AASHTO equation.

#### LRTC Equation and FHWA Tech Brief Equation

To determine the degree of similarity between the RCP values given by the LRTC equation and the FHWA Tech Brief equation, SR values were input into both equations to yield corresponding values of RCP. A linear regression analysis was performed between the RCP values given by the LRTC equation and the RCP values given by the FHWA Tech Brief equation, which yielded the equation: LRTC RCP = 452.456 + 0.706 FHWA RCP (R<sup>2</sup> = 0.986). The t-statistic for the test of the null hypothesis of the estimated intercept being 0 was 49.287 while that for the test of the null hypothesis of the slope being 1 was -49.194. Based on these t-test results, the intercept is significantly different from 0 and the slope is significantly different from 1. These results indicate the two equations do not yields statistically similar predictions of RCP.

An inspection of Figure 6.1 shows that there is a range of SR values for which the LTRC equation gives RCP predictions that are lower in magnitude than the corresponding predictions given by the FHWA Tech Brief equation and vice versa. Applying the appropriately modified version of Equation (4) showed that the FHWA Tech Brief predictions are on average about 17% higher than the predictions given by the LTRC equation for SR values not exceeding 19.1 kilohm-cm. For SR values exceeding 19.1 kilohm-cm, the results showed the RCP predictions by the FHWA Tech Brief equation were on average about 16% lower than the predictions given by the LRTC equation.

## TTU 56-Day and 91-Day Equation and AASHTO Equation

The null hypothesis of the equality of corresponding parameters of the TTU 56-day and 91-day RCP equation and the AASHTO RCP equation (both equations are presented in Figure 6.2) was tested using a statistical t-test. The absolute t-value obtained for the test of the equality of the power parameter was 3.51 while that for the equality of the coefficient was 4.71. Based on these t-statistics and a five percent level of significance, significant differences were found to exist between corresponding parameter estimates.

When the TTU 56-day and 91-day RCP data were regressed on predictions given by the AASHTO RCP equation, the following equation was obtained: TTU 56-day and 91-day RCP = 60.192 + 1.092 AASHTO RCP ( $R^2 = 0.940$ ). The t-statistic for the test of the null hypothesis of the estimated intercept being 0 was 1.469 while that for the test of the null hypothesis of the

estimated slope being 1 was 4.122. Based on these t-test results, the null hypothesis of the estimated intercept being 0 is not rejected, however, the estimated slope significantly exceeds 1 indicating that TTU 56-day and 91-day RCP values are on average higher than the corresponding RCP values predicted by the AASHTO equation.

Applying the appropriately modified version of Equation (4) showed that the RCP predictions given by the AASHTO equation were on average about 12% lower those given by the TTU 56-day and 91-day equation.

Further, when the TTU 56-day and 91-day RCP data were regressed on predictions given by the AASHTO RCP equation with the intercept term constrained to a value of 0, the following equation was obtained: TTU 56-day and 91-day RCP = 1.119 AASHTO RCP ( $R^2 = 0.982$ ). Were the RCP values predicted by the AASHTO equation to be similar to the TTU 56-day and 91-day RCP values, the estimated slope would be statistically equal to 1. A statistical test of the null hypothesis of the slope being 1 gave a t-value of 9.792, resulting in a rejection of the null hypothesis. Based on the equation, the TTU 56-day and 91-day RCP values were on average about 11.9% higher than the values given by the AASHTO equation (Table 6.3).

### TTU 28-Day Equation and AASHTO Equation

The hypothesis of equality of the parameters of the TTU 28-day RCP equation and the AASHTO RCP equation were directly tested (equations are shown in Figure 6.3) using a statistical t-test. Each equation is a power function of the form  $cx^p$  where *c* is a coefficient, *p* is the power, and *x* is the variable.

The t-statistic for the test of the null hypothesis of equality of the coefficient c in both equations was 0.34. Using a five percent level criterion, t-critical was determined to be 2.01. Hence, the null hypothesis of equality of the coefficient in the two equations could not be rejected.

The t-value for the null hypothesis of equality of the power p in both equations was 3.14, indicating a significant difference between the powers in the two equations. With the estimated powerparameters of the two equations being significantly different from each other, it points to the two equations yielding significantly different predictions of RCP for the same input of SR.

When the TTU 28-day RCP data were regressed on the predictions given by the AASHTO RCP equation, the following equation was obtained: TTU 28-day RCP = -37.732 + 0.797 AASHTO RCP (R<sup>2</sup> = 0.986). The t-statistic for the test of the null hypothesis of the estimated intercept being 0 was -1.428 while that for the test of the null hypothesis of the estimated slope being 1 was 14.524. Based on these t-test results, the null hypothesis of the estimated intercept being 0 is not rejected. However, the estimated slope is significantly less than 1 indicating that the TTU 28-day RCP values are on average lower than the values predicted by the AASHTO RCP equation.

Applying the appropriately modified version of Equation (4) showed that the RCP predictions given by the AASHTO equation were on average about 29% higher in magnitude than the RCP predictions given by the TTU 28-day equation (reported in Table 6.4).

### TTU 28-Day Equation and FHWA Tech Brief Equation

The hypothesis of equality of the parameters of the TTU 28-day equation and the FHWA Tech Brief equation were directly tested (equations are shown in Figure 6.3) using statistical ttests. Again, both equations are power functions defined generally as  $cx^p$ , where *c* is the coefficient, *p* is the power, and *x* is the variable. The absolute t-value for the test of the null hypothesis of equality of the coefficient *c* was 1.86. Using a five percent level criterion, the null hypothesis of equality of the coefficient in the two equations cannot be rejected (t-critical is 2.01). The t-value for the null hypothesis of equality of the power p in both equations was 1.74. Given t-critical is 2.01, again, the null hypothesis of equality of the power in both equations cannot be rejected.

When the TTU 28-day RCP data were regressed on the predictions given by the FHWA Tech Brief RCP equation, the following equation was obtained: TTU 28-day RCP = 143.759 + 0.856 Tech Brief RCP (R<sup>2</sup> = 0.982). The absolute t-value for the test of the null hypothesis of the estimated intercept being 0 was 5.294 while that for the test of the null hypothesis of the estimated slope being 1 was 8.426 (reported in Table 6.4). Based on these t-test results, the null hypothesis of the estimated intercept being 0 is rejected. Additionally, the null hypothesis of the estimated slope being equal to 1 is also rejected. These results point to significant differences between corresponding values of TTU 28-day RCP and RCP predictions given by the FHWA Tech Brief equation.

Applying the appropriately modified version of Equation (4) showed that the RCP predictions given by the FHWA Tech Brief equation were on average about 3% higher in magnitude than the RCP predictions given by the TTU 28-day equation



FIGURE 6.1: SR-RCP Correlation with All Available TTU Data

| Data Sets to be Compared                        | T Statistic <br>Slope = 1 | Statistical<br>Difference? | How much Higher/Lower on<br>Average?                                                                                                                                           |
|-------------------------------------------------|---------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TTU Data and AASHTO<br>Equation                 | 2.649                     | Yes                        | TTU data on average about 4% higher than predicted by AASHTO equation                                                                                                          |
| TTU Data and FHWA Tech<br>Brief Equation        | 3.68                      | Yes                        | FHWA Tech Brief predictions on average about 24% lower than TTU data                                                                                                           |
| TTU Data and LTRC Equation                      | 15.650                    | Yes                        | LTRC equation predictions on average 18% lower than TTU data                                                                                                                   |
| AASHTO Equation and<br>FHWA Tech Brief Equation | 30.448                    | Yes                        | FHWA TB predictions on average 20% lower than AASHTO predictions                                                                                                               |
| AASHTO Equation and LTRC<br>Equation            | 63.999                    | Yes                        | LRTC equation predictions on average<br>about 15% lower than AASHTO<br>predictions                                                                                             |
| LTRC Equation and FHWA TB<br>Equation           | 49.194                    | Yes                        | For SR $\leq$ 19: FHWA TB predictions on<br>average 17% higher than LTRC<br>predictions.<br>For SR > 19: FHWA TB predictions on<br>average 16% lower than LTRC<br>predictions. |

| TADIE 6 2. Statistical | Componiona  | f Data and Ea  | mations in 1 | Figure 6 1 |
|------------------------|-------------|----------------|--------------|------------|
| TADLE 0.2: Statistical | Comparisons | JI Data anu Et | juations m i | rigure 0.1 |



FIGURE 6.2: SR-RCP Correlation with only TTU Normally Moist Cured Results

| Data Sets to be Compared | T<br>statistic | Statistical Difference? | How much higher/lower on average?    |
|--------------------------|----------------|-------------------------|--------------------------------------|
| TTU 56-Day and 91-Day    |                |                         | AASHTO equation predictions are on   |
| Data and AASHTO          | 9.792          | Yes                     | average about 12% lower than TTU 56- |
| Equation                 |                |                         | Day and 91-Day RCP data              |



FIGURE 6.3: SR-RCP Correlation with only TTU Accelerated Moist Cured Results

| Data Sets to be Compared                        | T<br>statistic | Statistical Difference? | How much higher/lower on average?                                                            |
|-------------------------------------------------|----------------|-------------------------|----------------------------------------------------------------------------------------------|
| TTU 28-Day Data and AASHTO Equation             | 14.524         | Yes                     | AASHTO equation predictions are on<br>average 29% higher than observed TTU<br>28-day data    |
| TTU 28-Day Data and<br>FHWA Tech Brief Equation | 8.426          | Yes                     | FHWA TB equation predictions on<br>average about 3% higher than observed<br>TTU 28-day data. |

# **RCP Predictions**

Figure 6.4 shows correlations between normally moist cured 56 and 91-day RCP results with 28-day accelerated moist cured results. Figure 6.4 contains only results from mixtures selected by TDOT for the current project. The high coefficients of determination ( $R^2 > 0.9$ ) would seem to indicate that results at later ages can be predicted with 28-day accelerated moist cured results, considerably shortening the waiting time for chloride permeability information.



FIGURE 6.4: Prediction of 56 and 91-day RCP Results with 28-day Accelerated RCP Results

Figures 6.5 and 6.6 show correlations between normally moist cured 91-day RCP results with 56-day normally moist cured RCP results for mixtures selected by TDOT for the current project and all available TTU results, respectively. The high coefficients of determination ( $R^2 >$ 0.9) from both plots would seem to indicate 91-day RCP results can be predicted with 56-day RCP results, considerably shortening the waiting time for chloride permeability information. However, in the past TDOT M&T management has been more interested in 56-day results than in 91-day results. Thus, Figures 6.5 and 6.6 were included primarily to demonstrate the capability if TDOT M&T management became more interested in 91-day RCP results. It is interesting to note that 20 additional pairs of points only slightly altered the prediction equation and correlation coefficient.



FIGURE 6.5: Prediction of 91-day RCP Results with 56-day RCP Results from the Current Project


FIGURE 6.6: Prediction of 91-day KCP Results with All Available TTU 56-day RC Results

Statistical Comparison of Predicted and Measured RCP Values

Table 6.5 shows a statistical comparison between predicted and measured RCP values. Complete predicted values and measured RCP results are shown in Appendices AH, AI, and AJ.

| Data Sets to be Compared                                                                                  | T<br>statistic | Statistical Difference? | How much higher/lower on average?                                                                           |
|-----------------------------------------------------------------------------------------------------------|----------------|-------------------------|-------------------------------------------------------------------------------------------------------------|
| 56-day Prediction Equation<br>based on TDOT 28-day<br>Accelerated Results and 56-<br>day Measured Results | 0.53           | No                      | Predicted 56-day RCP values are on<br>average approximately 2% lower than<br>the measured 56-day RCP values |
| 91-day Prediction Equation<br>based on TDOT 28-day<br>Accelerated Results and 91-<br>day Measured Results | 0.77           | No                      | Predicted 91-day RCP values are on<br>average approximately 2% lower than<br>the measured 91-day RCP values |
| 91-day Prediction Equation<br>based on 56-day TDOT<br>Results and 91-day<br>Measured Results              | 0.72           | No                      | Predicted 91-day RCP values are on<br>average 1.7% lower than the measured<br>91-day RCP values             |
| 91-day Prediction Equation<br>based on 56-day All<br>Available TTU Results and<br>91-day Measured Results | 0.19           | No                      | Predicted 91-day RCP values are on<br>average 0.2% lower than the measured<br>91-day RCP values             |

 TABLE 6.5: Statistical Comparisons of Predicted and Measured RCP Values

#### **SR** Predictions

Figures 6.7 and 6.8 show correlations between normally moist cured 56 and 91-day SR results with 28-day accelerated moist cured and normally moist cured SR results, respectively. Figures 6.7 and 6.8 contain results only from mixtures selected by TDOT for the current project. Figure 6.9 shows correlations between normally moist cured 56 and 91-day SR results with 28-day normally moist cured SR results using all available TTU results. The high coefficients of determination ( $R^2 > 0.9$ ) indicates that results at later ages can be predicted with either 28-day accelerated moist cured or 28-day normally moist cured results, considerably shortening the waiting time for chloride permeability information.



FIGURE 6.7: Prediction of 56 and 91-day SR Results with 28-day Accelerated SR Results



FIGURE 6.8: Prediction of 56 and 91-day SR Results with TDOT 28-day Normally Moist Cured SR Results



FIGURE 6.9: Prediction of 56 and 91-day SR Results with All Available TTU 28-day Normally Moist Cured SR Results

Figures 6.10 and 6.11 show correlations between normally moist cured 91-day SR results with 56-day normally moist cured SR results for mixtures selected by TDOT for the current project and all available TTU results, respectively. The high coefficients of determination ( $R^2 > 0.9$ ) from both plots would seem to indicate that 91-day SR results could be predicted with 56-day SR results, considerably shortening the waiting time for chloride permeability information. However, in the past TDOT M&T management has been much more interested in 56-day results than 91-day results. Thus, Figures 6.10 and 6.11 were included primarily to demonstrate the capability if TDOT M&T management became more interested in 91-day SR results. Unlike RCP, the additional 39 pairs of points altered the type of prediction equation and the correlation coefficient.



FIGURE 6.10: Prediction of 91-day SR Results with 56-day SR Results from the Current Project



FIGURE 6.11: Prediction of 91-day SR Results with All Available TTU 56-day SR Results

#### Statistical Comparison of Predicted and Measured SR Values

Table 6.6 shows the statistical comparison of predicted and measured SR values. Complete predicted values and measured SR results are shown in Appendices AK, AL, and AM.

| Data Sets to be Compared                                                                                                           | T<br>statistic | Statistical<br>Difference? | How much higher/lower on average?                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------|--------------------------------------------------------------------------------------------------------|
| 56-day Prediction Equation<br>based on TDOT 28-day<br>Accelerated Results and 56-<br>day Measured Results                          | 0.749          | No                         | On average predicted 56-day SR values<br>are 2.8% higher relative to the observed<br>56-day SR values  |
| 91-day Prediction Equation<br>based on TDOT 28-day<br>Accelerated Results and 91-<br>day Measured Results                          | 0.946          | No                         | On average predicted 91-day SR values<br>are 2.6% higher relative to the measured<br>91-day SR values  |
| 56-day Prediction Equation<br>based on TDOT 28-day<br>Results and 56-day<br>Measured Results                                       | 0.172          | No                         | On average predicted 56-day SR values<br>are 0.6% lower relative to the measured<br>56-day SR values   |
| 91-day Prediction Equation<br>based on TDOT 28-day<br>Results and 91-day<br>Measured Results                                       | 0.678          | No                         | On average, predicted 91-day SR values<br>are 0.6% higher relative to the measured<br>91-day SR values |
| 56-day Prediction Equation<br>based on All Available TTU<br>28-day Results and 56-day<br>Measured Results                          | 0.111          | No                         | On average, predicted 56-day SR values<br>are 0.1% higher relative to the measured<br>56-day SR values |
| 91-day Prediction Equation<br>based on All Available TTU<br>28-day Results and 91-day<br>Measured Results                          | 0.002          | No                         | On average, predicted 91-day SR values<br>are 0.002% lower than measured 91-day<br>SR values           |
| 91-day Prediction Equation<br>based on 56-day TDOT<br>Results and 91-day<br>Measured Results                                       | 0.806          | No                         | On average, predicted 91-day SR values<br>are 1.5% higher relative to the measured<br>91-day SR values |
| <ul><li>91-day Prediction Equation<br/>based on 56-day All</li><li>Available TTU Results and<br/>91-day Measured Results</li></ul> | 0.005          | No                         | On average, predicted 91-day SR values<br>are 0.003% higher relative to measured<br>91-day SR values   |

 TABLE 6.6: Statistical Comparisons of Predicted and Measured SR Values

#### **Choosing a Test Method**

#### **Correlations**

Table 6.7 shows some correlations between SR and RCP results for the same mixture at the same age. The correlations presented are from both literature and current experimentation. The correlations seem to be strong (close to or above 0.9). The test methods both purport to be evaluating the concrete's resistance to the flow of chloride ions. Both test methods use electric current (charge transmitted or resistance) to evaluate concrete resistance to chloride ion flow. Therefore, the choice of which method to use should be first based on the precision of the test methods.

| Correlation            | Source              | Equation                    | Coefficient of Determination |
|------------------------|---------------------|-----------------------------|------------------------------|
| Category Limits        | AASHTO Test Methods | $RCP = 79074(SR)^{-1.206}$  | 0.9999                       |
| Provided Data          | FHWA TF Lab         | $RCP = 98441(SR)^{-1.35}$   | 0.9200                       |
| Provided Data          | LTRC                | $RCP = 39647(SR)^{-0.944}$  | 0.8922                       |
| All Available TTU Data | TTU Data            | $RCP = 99584(SR)^{-1.271}$  | 0.8944                       |
| 91 days                | TTU Data            | $RCP = 125451(SR)^{-1.316}$ | 0.9168                       |
| 56 days                | TTU Data            | $RCP = 104446(SR)^{-1.253}$ | 0.9601                       |
| 56+91 days             | TTU Data            | $RCP = 114533(SR)^{-1.285}$ | 0.9524                       |
| 28-day Accelerated     | TTU Data            | $RCP = 81780(SR)^{-1.299}$  | 0.9772                       |

**TABLE 6.7: Comparison of SR-RCP Correlation Coefficients** 

#### Variability

A comparison of AASHTO test methods clearly indicates that SR has a lower single operator (6.3 vs. 12.3%) and multi-laboratory precision (12.5 vs. 18.0%). Table 6.8 shows comparisons between SR and RCP variability for the same mixture at the same age. The comparison winners of a pairing (substantially lower variability) are shown in italics. In three of the six cases, SR won two while RCP won one. In the other three of the six cases, there was no

clear winner. Therefore, the choice of which method is better should not be primarily based on precision, but other criteria should have predominance.

| Age of Test        | Mixture       | Test Method | COV (%) | AASHTO Allowable<br>Single Operator COV % |
|--------------------|---------------|-------------|---------|-------------------------------------------|
| 28-day Accelerated | Class D 80/20 | RCP         | 10.7    | 12.3                                      |
| 28-day Accelerated | Class D 80/20 | SR          | 6.3     | 6.3                                       |
|                    |               |             |         |                                           |
| 28-day Accelerated | 50/35/15      | RCP         | 5.3     | 12.3                                      |
| 28-day Accelerated | 50/35/15      | SR          | 5.0     | 6.3                                       |
|                    |               |             |         |                                           |
| 56-day             | Class D 80/20 | RCP         | 6.0     | 12.3                                      |
| 56-day             | Class D 80/20 | SR          | 6.2     | 6.3                                       |
|                    |               |             |         |                                           |
| 56-day             | 50/35/15      | RCP         | 5.1     | 12.3                                      |
| 56-day             | 50/35/15      | SR          | 7.8     | 6.3                                       |
|                    |               |             |         |                                           |
| 91-day             | Class D 80/20 | RCP         | 12.1    | 12.3                                      |
| 91-day             | Class D 80/20 | SR          | 5.9     | 6.3                                       |
|                    |               |             |         |                                           |
| 91-day             | 50/35/15      | RCP         | 10.4    | 12.3                                      |
| 91-day             | 50/35/15      | SR          | 9.8     | 6.3                                       |

TABLE 6.8: Comparison of SR and RCP Variability

#### Logistics

Table 6.9 shows comparisons between SR and RCP logistics. SR dominated the logistical comparison winning every individual category.

| Parameter                             | RCP                                                        | SR               | Advantage |
|---------------------------------------|------------------------------------------------------------|------------------|-----------|
| Initial Cost                          | Approx. \$ 12,000                                          | Approx. \$ 3,000 | SR        |
| Recurring Costs                       | Chemicals, Epoxy                                           | None             | SR        |
| Data Availability                     | 2 days                                                     | About 10 minutes | SR        |
| Time to Conduct                       | 6 hours                                                    | About 10 minutes | SR        |
| Preparation Time                      | About 1.5 days                                             | About 15 minutes | SR        |
| Clean Up Time                         | 2 hours                                                    | Minutes          | SR        |
| Safety / Environmental<br>Regulations | <ul><li>Specimen Sawing</li><li>Chemical Storage</li></ul> | None             | SR        |
| Sample Reuse                          | No                                                         | Yes              | SR        |
| Technician Training                   | Considerable                                               | Minimal          | SR        |

**TABLE 6.9:** Comparison of SR and RCP Logistics

#### Summary

Table 6.10 shows a summary of the comparisons between SR and RCP. SR is the clear choice, winning four of the six individual categories as well never losing in a logistical category.

| TIDEE 0.10. Summary Comparison of Six and Ref |                                   |  |
|-----------------------------------------------|-----------------------------------|--|
| Parameter                                     | Advantage                         |  |
| Accuracy                                      | Not Known                         |  |
| Variability (Precision)                       | Slight Edge SR (AASHTO Allowable) |  |
| Cost                                          | Clearly SR (more than 4:1)        |  |
| Time                                          | Clearly SR (minutes vs days)      |  |
| Ease of Operation                             | Clearly SR                        |  |
| Safety                                        | SR (no chemicals or sawing)       |  |
| Overall                                       | Clearly SR                        |  |

**TABLE 6.10: Summary Comparison of SR and RCP** 

#### **Choosing a Curing Regime**

#### Investigating the Ambiguity of Accelerated Curing

The literature is somewhat ambiguous about what normally cured age is best associated with accelerated curing. Ozyildirim of the Virginia Transportation Research Council (who developed the method) says it gives results equivalent to 6 months of standard curing in TRR 1610 (26). HPC Bridge Views Issue 67 May/June 2011 (71) states that accelerated curing produces

results equivalent to 90 days of standard curing. Unfortunately, the TDOT D-LP survey of state DOTs revealed that five states use accelerated curing in lieu of 56-day testing.

The research team attempted to solve the mystery with data from the current project. Figure 6.12 shows normally cured mean SR values plotted against time for both TDOT selected mixtures. Each point on the plot represents 20 results. Linear regression lines were also determined for each TDOT selected mixture. Using the linear regression equations and the SR results from each TDOT selected mixture, a "time" was calculated for each accelerated curing result. The "times" calculated were averaged and are shown in Figure 6.13. The average "times" for TDOT Class D with 20% Class F fly ash and the 50/35/15 mixture were 85.2 and 57.9 days, respectively.



FIGURE 6.12: Mean Normally Cured SR Result vs. Curing Time



FIGURE 6.13: Mean Time Associated with Accelerated Curing of TDOT Selected Mixtures

The two TDOT selected mixtures had extensive similarities. Table 6.11 shows the similarities and differences between the TDOT selected mixtures. The primary difference between the two mixtures was in the SCMs. It seems that the normal curing time associated with accelerated curing is at least a function of the amount and type of SCMs. Unfortunately, the extensive similarities in the two mixtures selected precluded the research team from evaluating other factors that might affect the normal curing time associated with accelerated curing.

| Parameter                              | Similarity or Difference in TDOT Selected<br>Mixtures |
|----------------------------------------|-------------------------------------------------------|
| w/cm                                   | Both 0.37                                             |
| Design air content                     | Both 7%                                               |
| Total cementing materials content      | Both 620-lbs/CY                                       |
| Type and Brand of PC                   | Same                                                  |
| Class F fly ash                        | Same                                                  |
| Slag                                   | Different one contained no slag                       |
| PC replacement with fly ash percentage | Similar 15 vs. 20%                                    |
| PC replacement with slag percentage    | Different 0 vs 35%                                    |
| Coarse aggregate                       | Same sample from same quarry                          |
| Coarse aggregate amount                | Similar 1857 vs. 1854-lbs/CY SSD                      |
| Fine aggregate                         | Same sample from same quarry                          |
| Fine aggregate amount                  | Same 1118-lbs/CY                                      |
| Air entraining agent                   | Same brand different dosage                           |
| Water reducer                          | Same brand different dosage                           |
| High range water reducer               | Same brand different dosage                           |

**TABLE 6.11: Comparison of TDOT Selected mixtures** 

#### Value as a Predictor of Later Age Results

Table 6.12 shows correlations between accelerated and normally cured 28-day SR results with 56 and 91-day normally cured SR results for the same mixture. The correlations are strong (all  $R^2 > 0.92$ ). The correlations presented indicate that accelerated curing does not correlate with later age results as well as normal curing. This competition is too close to call and therefore, the choice of curing method to use should be based on other criteria.

| TABLE 6.12: Comparison of Accelerated and Normal Cured 28-day Results Correlations |
|------------------------------------------------------------------------------------|
| with 56 and 91-day Normally Cured Results                                          |

| Predictor                 | Attempting to Predict (days) | Coefficient of<br>Determination |
|---------------------------|------------------------------|---------------------------------|
| 28-day Accelerated Curing | 56                           | 0.938                           |
| 28-day Normal Curing      | 56                           | 0.974                           |
| 28-day Accelerated Curing | 91                           | 0.925                           |
| 28-day Normal Curing      | 91                           | 0.963                           |

#### Logistics

Table 6.13 shows comparisons between accelerated and normal curing logistics. Normal curing dominated the logistical comparison by not losing in any individual category.

|                   |                             | 0                          |                       |
|-------------------|-----------------------------|----------------------------|-----------------------|
| Parameter         | Accelerated                 | Normal                     | Advantage             |
| Water Heater      | Larger and more expensive   | Smaller and less expensive | Normal                |
| Water Circulation | Pump, PVC pipe<br>and hoses | Pump and hoses             | Slight Edge<br>Normal |

 TABLE 6.13: Comparison of Accelerated and Normal Cured Logistics

#### Insulation Not needed or minimal Required Normal Lower capacity less Higher capacity Battery Backup Normal more expensive expensive Response Time (before Much longer (close to lab 2 to 3 hours Normal falling out of temp range) temp) Computer, data Computer, data acquisition Monitoring Equipment acquisition package None package and thermocouples and thermocouples **Power Consumption** Higher Lower Normal

#### Summary

Table 6.14 shows a summary of the comparisons between accelerated and normal curing. Normal curing is the clear choice winning four of the six individual categories as well never losing in a category.

| Parameter                              | Advantage         |
|----------------------------------------|-------------------|
| Ambiguity (what "time" or "age")       | Normal Curing     |
| Predicting Later Values (Correlations) | Too close to call |
| Cost                                   | Normal Curing     |
| Time                                   | Same              |
| Ease of Operation                      | Normal Curing     |
| Fail Safety (Response Time)            | Normal Curing     |
| Overall                                | Normal Curing     |

#### **Calculating What to Specify**

If SR is selected as the preferred test method by TDOT M&T Division management, the next logical question would be what 28-day SR should be specified as the equivalent to the 1200 Coulombs at 56 days selected in previous TDOT research. The first step in answering that question is to convert the 56-day RCP value to a 56-day SR value. Table 6.15 shows several correlations between a 56-day 1200 Coulombs for RCP and 56-day SR.

TABLE 6.15: Conversions from 1200-Coulombs @ 56-days RCP to Equivalent 56-day SR

| Correlation       | Equation                    | SR Result (kilohm-cm) |
|-------------------|-----------------------------|-----------------------|
| AASHTO Categories | $SR = 11494(RCP)^{-0.829}$  | 32.2                  |
| TTU All Data      | $SR = 4724.2(RCP)^{-0.704}$ | 32.1                  |
| TTU 56-day        | $SR = 8006.4(RCP)^{-0.767}$ | 34.8                  |
| UT All Data       | $SR = 3016(RCP)^{-0.654}$   | 29.2                  |
| UT 56-day         | $SR = 2834.6(RCP)^{-0.656}$ | 27.1                  |

The AASHTO and TTU All Data correlations produced very similar SR results. These two results seem to be in the middle with TTU 56-day being less conservative and UT being more conservative. Since an AASHTO correlation is easily accessible and easy to defend, the research team recommends it.

The next step is to convert the 56-day SR value to a 28-day SR value. Table 6.16 shows several conversions from a 56-day SR of 32.2 to a 28-day SR value based on TTU prediction equations presented earlier.

| TIDEE OTOV CONVERSIONS IT ONLEG AUG SIX to Lo Aug SIX |                                                         |                                                  |                                                    |  |  |  |  |
|-------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|--|--|--|--|
| Correlation                                           | SR28 Accelerated<br>Cured TDOT Data Only<br>(kilohm-cm) | SR28 Normal Cured<br>All TTU Data<br>(kilohm-cm) | SR28 Normal Cured<br>TDOT Data Only<br>(kilohm-cm) |  |  |  |  |
| Value                                                 | 34.8                                                    | 22.9                                             | 23.6                                               |  |  |  |  |

TABLE 6.16: Conversions from 56-day SR to 28-day SR

The research team recommends a SR of 24 for a 28-day specification with normal curing. However, an SR of 35 with accelerated curing would also be a reasonable 28-day specification. Recall that accelerated curing for both 80PC/20F and 50PC/35SL/15F indicated that accelerated curing produces an equivalent normal curing age greater than 56-days and therefore the accelerated curing SR is greater than the SR equivalent to RCP = 1200 Coulombs at 56-days.

#### **CHAPTER 7 : CONCLUSIONS**

The following conclusions can be drawn from the results obtained from this study:

#### Correlations

- 1. There is a strong relationship between SR and RCP results for the same mixture at the same age for all TTU data (202 points,  $R^2 = 0.8944$ ).
- 2. There is a strong relationship between SR and RCP results for the same mixture at the same age for 56 and 91-day normally moist-cured TTU data (155 points,  $R^2 = 0.9524$ ).
- 3. There is a strong relationship between SR and RCP results for the same mixture at the same age for 28-day accelerated TTU data (47 points,  $R^2 = 0.9772$ ).
- 4. There are statistically significant differences between the TTU RCP data and the predictions given by the AASHTO Categories equation.
- 5. There are statistically significant differences between the TTU data and the predictions given by the LTRC equation.
- 6. There are statistically significant differences between the TTU RCP data and the predictions given by the FHWA TB equation.
- 7. There is a statistically significant difference between the TTU 56 and 91-day data and the predictions given by the AASHTO Categories equation.
- There is a statistically significant difference between the TTU 28-day accelerated data and the respective predictions given by the AASHTO Categories equation and the FHWA TB equation.
- 9. The above significant observations, which are based on TTU data, lead to the conclusion that equations reported by national agencies may not transfer effectively elsewhere. Hence,

there is the need to either use them with caution or to develop equations locally that would more likely be better suited to the local environment.

#### **SR** Predictions

- 1. There is a strong relationship between 28-day accelerated SR results and SR for the same mixture at 56 days ( $R^2 = 0.938$ ) and 91 days ( $R^2 = 0.9236$ ) for TDOT project data (40 points per age).
- 2. There is a strong relationship between 28-day normal moist-cured SR results and SR for the same mixture at 56 days ( $R^2 = 0.974$ ) and 91 days ( $R^2 = 0.9632$ ) for TDOT project data (40 points per age).
- 3. There is a strong relationship between 28-day normal moist-cured SR results and SR for the same mixture at 56 days ( $R^2 = 0.9849$ ) and 91 days ( $R^2 = 0.9659$ ) for all TTU data (79 points per age).
- 4. There is a strong relationship between 56-day SR results and SR for the same mixture at 91 days ( $R^2 = 0.9482$  for 40 TDOT points) and ( $R^2 = 0.9885$  for 79 TTU points).
- 5. Overall, the results of the statistical analysis here lead to the conclusion that the measured SR of early age specimens is a very good predictor of the SR to be attained at a much later age. This finding has the potential to reduce agency time and cost associated with durability tests.

#### **RCP** Predictions

1. There is a strong relationship between 28-day accelerated RCP results and RCP for the same mixture at the 56 days ( $R^2 = 0.9476$ ) and 91 days ( $R^2 = 0.9257$ ) for TDOT project data (40 points per age).

- 2. There is a strong relationship between 56-day RCP results and RCP for the same mixture at 91 days ( $R^2 = 0.9565$  for 40 TDOT points) and ( $R^2 = 0.9541$  for 60 TTU points).
- 3. Again, overall, the results of the statistical analysis here lead to the conclusion that the measured RCP of early age specimens is a very good predictor of the RCP to be attained at a much later age. This finding has the potential to reduce agency time and cost associated with the conduct of rapid chloride permeability tests.

#### **Test Method**

1. SR is strongly preferred over RCP as a test method because of the cost and the logistical reasons aforementioned.

#### **Curing Method**

- The results obtained from normally-cured 28-day SR specimens correlate to later age SR results just as well if not slightly better than the SR results of 28-day specimens cured in an accelerated manner (7 days @ 73°F and 21 days @ 100°F).
- 2. The normal moist-cured age equivalent to that of accelerated moist-cured is dependent on the composition of the PC/SCM matrix.
- Normal curing of SR specimens is strongly preferred over accelerated curing for logistical reasons.

### **CHAPTER 8 : RECOMMENDATIONS**

Based on the results and analysis, the research team recommends the following:

- 1. Use SR (AASHTO TP 95-11) instead of RCP (AASHTO T 277-07).
- 2. Use normal curing instead of accelerated curing.
- 3. Specify SR of 24 minimum at 28-days with normal curing. Specify SR of 35 minimum with 28-day accelerated curing.
- 4. Accumulate more SR and/or RCP data on mixtures containing:
  - A. No SCM (recent outage)
  - B. Class C fly ash
  - C. Higher percentage replacements of Class F fly ash (~25%)
  - D. Silica fume
  - E. Metakaolin
- 5. Accumulate more SR and/or RCP data on mixtures:
  - A. With coarse aggregates other than that used in this study
  - B. With fine aggregates other than that used in this study
  - C. With lightweight coarse and/or fine aggregates
  - D. With w/cm ratios other than 0.37
  - E. With fine aggregate percentages other than 38

#### BIBLIOGRAPHY

- Koch, Gerhardus H., Michiel P.H. Brongers, Neil G. Thompson, Y. Paul Virmani, and J. H. Payer. Corrosion Coats and Preventive Strategies in the United States. Publication. NACE International, Federal Highway Administration.
- 2. Federal Highway Administration. "Deficient Bridges by State and Highway System." *Bridges and Structures*. Federal Highway Administration, 27 May 2015.
- 3. Bagheri, Ali Reza and Hamed Zanganeh. "Comparison of Rapid Tests for Evaluation of Chloride Resistance of Concretes with Supplementary Cementitious Materials." *Journal of Materials in Civil Engineering* (2012): 1175-1181.
- 4. Mehta, P. K. "Durability of Concrete -- Fifty Years of Progress?" *ACI Materials Journal*. Special Publication 126-1 (1991): 1-31.
- 5. ACI. "Permeability." *ACI CT-13*. Farmington Hills, MI: American Concrete Institute, 2013. 46.
- 6. ACI Committee 201. *Guide to Durable Concrete*. Rep. no. ACI 201.2R-01. American Concrete Institute, 2001. Print.
- 7. Detwiler, Rachel J., Chris A. Fapohunda and Jennifer Natale. "Use of Supplementary Cementing Materials to Increase the Resistance to Chloride Ion Penetration of Concretes Cured at Elevated Temperatures." *ACI Materials Journal* (1994): 63-66.
- 8. Sengul, Ozkan and Mehmet Ali Tasdemir. "Compressive Strength and Rapid Chloride Permeability of Concretes with Ground Fly Ash and Slag." *Journal of Materials in Civil Engineering* (2009): 494-501.
- 9. Ozyildirim, Celik. *Effects of Temperature on the Development of Low Permeability in Concretes*. Rep. Charlottesville, VA: Virginia Transportation Research Council, 1998. Print.
- 10. Committee E701 Materials for Concrete Construction. "Cementitious Materials for Concrete." *ACI Education Bulletin* (2001): 17-21.
- 11. Thomas, Michael, Donald S. Jopkins, Martin Perreault, Kevin Cail. "Ternary Cement in Canada." *Concrete International* (2007): 59-64.
- 12. Jin, Yingqin and Nur Yazdani. "Substitution of Fly Ash, Slag, and Chemical Admixtures in Concrete Mix Designs." Journal of Materials in Civil Engineering (2003): 602-608.

- 13. Slag Cement Association. "What is slag cement (ground granulated blast furnace slag)?". *Slag Cement Association.* 13 January 2015.
- Bouzoubaâ, Nabil, Alain Bilodeau, Vasanthy Sivasundaram, Benoit Fournier, Dean M. Golden. "Development of Ternary Blends for High-Performance Concrete." ACI Materials Journal (2004): 19-29.
- 15. Chengqi, Wang and Wang Dongdong. "Evaluation of Concrete Mixtures with High Slag Cement Contents." Concrete International (2011): 51-56.
- 16. ACI Committee 226. "Ground Granulated Blast-Furnace Slag as a Cementitious Constituent in Concrete." ACI Materials Journal (1987): 327-342.
- 17. ACI Committee 116. "Cement and Concrete Terminology." American Concrete Institute (2013): 1-78.
- ASTM C125-13a. "Standard Terminology Relating to Concrete and Concrete Aggregates." American Society for Testing and Materials. *Annual Book of ASTM Standards*. West Conshohocken, PA, 2013. 74-81.
- ASTM C989-12a. "Standard Test Method for Slag Cement for Use in Concrete and Mortars." American Society for Testing and Materials. *Annual Book of ASTM Standards*. West Conshohocken, PA, 2013. 551-558.
- Mineral Products Association. "Cementitious Materials." Mortar Industry Association (2013): 1-9.
- 21. Taylor, Peter, Paul Tikalsky, Kejin Wang, Gary Fick, Xuhao Wang. "Development of Performance Properties of Ternary Mixtures." Ames, IA: National Concrete Pavement Technology Center, 2012.
- 22. ASTM C618-12a. "Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete." *Annual Book of ASTM Standards*. Annual Book of ASTM Standards. West Conshohocken, PA, 2013. 345-349.
- 23. Mielenz, Richard C. "Concrete International." *Mineral Admixtures History and Background* (1983): 34-42. *Concrete International*. Web.
- 24. American Coal Ash Association. *Fly Ash Facts for Highway Engineers*. Technical Report Documentation Page. Washington, DC: FHWA, 2003.

- 25. Du, Lianxiang and Kevin J. Folliard. "Mechanisms of air entrainment in concrete." *Cement and Concrete Research* (2005): 1463-1471.
- 26. ASTM C1202-12. "Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration." American Society for Testing and Materials. *Annual Book of ASTM Standards*. West Conshohocken, PA, 2013. 672-679.
- 27. Liu, Yanbo and Francisco Presuel-Moreno. "Effect of Elevated Temperature Curing on Compressive Strength and Electrical Resistivity of Concrete with Fly Ash and GGBS." ACI Materials Journal (2012): 1-10. Technical Paper.
- Salvador, Michael, Chaekuk Na, Hani Nassif, Frank Corso. "Effect of Accelerated Curing on Surface Resistivity and Rapid Chloride Permeability of High Performance Concrete." 2012.
- 29. Klieger, Paul. "Effect of Mixing and Curing Temperature on Concrete Strength." *Research and Development Laboratories of the Portland Cement Association* (1958).
- Ryan, Eric; Burdette, Edwin; Ankabrandt, Ryan; Nidiffer, Robert; Buchanan, Brian. Comparison of Two Methods to Assess the Resistance of Concrete to Chloride Ion Penetration. ASCE, April 1, 2014. Journal of Materials in Civil Engineering. Vol. 26, Issue 4.
- 31. Chini, Abdol, Muszynski, Larry and Hicks, Jamie. Determination of Acceptance Permeability Characterisitics for Performance-Related Specifications for Portland Cement Concrete. M.E. Rinker, Sr. School of Building Construction, University of Florida. FDOT. July 2003.
- 32. Torii, K., T. Sasatani and M. Kawamura. "Application of Rapid Chloride Permeability Test to Evaluate the Chloride-Ion Penetration Into Concrete." ACI Materials Journal, Special Publication (1997): 421-436.
- 33. Lane, Stephen D., Rachel J. Detwiler and R. Douglas Hooton. "Testing Transport Properties in Concrete." *Concrete International* (November 2010): 36-37.
- 34. Joshi, Prakash and Chan, Cesar. Rapid Chloride Permeability Testing. Hanley-Wood, LLC. 2002. Publication #C02L037.
- 35. Tanesi, Jussara and Ardani, Ahmad. *Surface Resisitivity Test Evaluation as an Indicator of the Chloride Permeability of Concrete*. FHWA Turner-Fairbank Highway Research Center. FHWA, December 2012. FHWA-HRT-13-024.

- 36. Julio-Betancourt, G. A. and R. D. Hooton. "Study of the Joule effect on rapid chloride permeability values and evaluation of related electrical properties of concretes." *Cement and Concrete Research* (2004): 1007-1015.
- AASHTO TP 95-11. "Standard Method of Test for Surface Resistivity Indication of Concrete's Ability to Resist Chloride Ion Penetration." American Association of State Highway Transportation Officials. 2011. 1-9.
- 38. Angst, Ueli M. and Bernhard Elsener. ""On the Applicability of the Wenner Method for Resistivity Measurements of Concrete"." *ACI Materials Journal* (2014): 661-669.
- Morris, W., E. I. Moreno and A. A. Sagues. "Practical Evaluation of Resistivity of Concrete in Test Cylinders using a Wenner Array Probe." *Cement and Concrete Research* (1996): 1779-1787.
- 40. Nadelman, Elizabeth and Kurtis, Kimberly. A Resistivity-Based Approach to Optimizing Concrete Performance. ACI Committee 236, May 2014.
- 41. Ryan, Eric William. Comparison of Two Methods for the Assessment of Chloride Ion Penetration in Concrete: A Field Study. University of Tennessee, 2011. Master's Thesis.
- Kessler, R. J., R. G. Powers, E. Vivas, M. A. Paredes, and Y. P. Virmani. Surface Resistivity as an Indicator of Concrete Chloride Penetration Resistance. Gainesville, FL. 2008.
- 43. Malhotra, V. M. and Nicholas J. Carino. "Concrete Resistivity." *Handbook on Nondestructive Testing of Concrete*. CRC Press LLC, 2006.
- 44. FM5-578. "Florida Method of Test for Concrete Resistivity as an Electrical Indicator of Its Permeability." 2004.
- 45. Liu, Yanbo, Andres Suarez and Francisco J. Presuel-Moreno. *Characterization of New and Old Concrete Structures Using Surface Resistivity Measurements*. Final Report. Dania Beach, Florida, 2010.
- 46. Rupnow, Tyson and Icenogle, Patrick. Evaluation of Surface Resistivity Measurements as an Alternative to the Rapid Chloride Permeability Test for Quality Assurance and Acceptance - Implementation Report. Louisiana Transportation Research Center, October 2012. FHWA/LA.13/496.
- Radlinski, Mateusz and Jan Olek. "Effects of Curing Conditions on Properties of Ternary (Ordinary Portland Cement/Fly Ash/Silica Fume) Concrete." ACI Materials Journal (2015): 49.

- Kosmatka, Steven H. and Michelle L. Wilson. "Design and Control of Concrete Mixtures." 15<sup>th</sup>. Skokie, Illinois: Portland Cement Association, 2012. 197.
- Kurgan, G. J., D. G. Tepke, A. J. Schokker, P. J. Tikalsky, B. E. Scheetz. "The Effects of Blended Cements on Concrete Porosity, Chloride Permeability, and Resistivity." *ACI* (2004): 114.
- 50. ASTM C642-13. "Standard Test Method for Density, Absorption, and Voids in hardened Concrete." American Society for Testing and Materials. *Annual Book of ASTM Standards*. West Conshohocken, PA, 2013. 362-364.
- 51. National Concrete Pavement Technology Center. *Permeable Voids (Boil Test)*. Iowa: Center for Transportation Research and Education, April 2008.
- 52. AASHTO T 27: Standard Method of Test for Sieve Analysis of Fine and Coarse Aggregates. *Standard Specifications for Transportation Materials and Methods of Sampling and Testing*. Washington, D.C. : AASHTO, 2008, Vol. Part 2A..
- 53. AASHTO T 11: Standard Method of Test for Materials Finer than 75-um (No. 200) Sieve in Mineral Aggregates by Washing. *Standard Specifications for Transportation Materials and Methods of Sampling and Testing*. Washington, D.C. : AASHTO, 2008.
- 54. ASTM C 33: Standard Specification for Concrete Aggregates. *Annual Book of ASTM Standards*. West Conshohocken, PA : ASTM International, 2006.
- 55. AASHTO T 85: Specific Gravity and Absorption of Coarse Aggregate. *Standard Specifications for Transportation Materials and Methods of Sampling and Testing*. Washington, D.C. : AASHTO, 2008.
- 56. AASHTO T 84: Standard Method of Test for Specific Gravity and Absorption of Fine Aggregate. *Standard Specifications for Transportation Materials and Methods of Sampling and Testing*. Washington, D.C. : AASHTO, 2008.
- 57. TDOT Specification 903.01: Fine Aggregate for Concrete. *Standard Specifications for Road and Bridge Construction*. Tennessee Department of Transportation. 2006.
- 58. AASHTO M 295: Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. *Standard Specifications for Transportation Materials and Methods of Sampling and Testing*. Washington, D.C. : AASHTO, 2008.
- 59. AASHTO M 302: Standard Specification for Ground Granulated Blast-Furnace Slag for Use in Concrete and Mortars. *Standard Specification for Transportation Materials and Methods of Sampling and Testing*. Washington, D.C. : AASHTO, 2008.

- 60. AASHTO M 194: Standard Specification for Chemical Admixtures for Concrete. *Standard Specification for Transportation Materials and Methods of Sampling and Testing*. Washington, D.C. : AASHTO, 2008.
- 61. AASHTO R 39: Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. *Standard Specifications for Transportation Materials and Methods of Sampling and Testing*. Washington, D.C. : AASHTO, 2008.
- 62. TDOT Specification 604.03: Classification and Proportioning and Quality Assurance of Concrete. *Standard Specifications for Road and Bridge Construction*. Tennessee Department of Transportation. 2006.
- 63. AASHTO T 119: Standard Method of Test for Slump of Hydraulic Cement Concrete. *Standard Specifications for Transportation Materials and Methods of Sampling and Testing.* Washington, D.C. : AASHTO, 2008.
- 64. AASHTO T 121: Standard Method of Test for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete. *Standard Specifications for Transportation Materials and Methods of Sampling and Testing*. Washington, D.C. : AASHTO, 2008.
- 65. AASHTO T 152: Air Content of Freshly Mixed Concrete by the Pressure Method. *Standard Specifications for Transportation Materials and Methods of Sampling and Testing*. Washington, D.C. : AASHTO, 2008.
- 66. AASHTO T 309: Standard Method of Test for Temperature of Freshly Mixed Hydraulic-Cement Concrete. *Standard Specifications for Transportation Materials and Methods of Sampling and Testing*. Washington, D.C. : AASHTO, 2008.
- 67. AASHTO T 22: Standard Method of Test for Compressive Strength of Cylindrical Concrete Specimens. *Standard Specifications for Transportation Materials and Methods of Sampling and Testing*. Washington, D.C. : AASHTO, 2008.
- 68. ASTM C 1231: Standard Practice for use of Unbonded Caps in Determination of Compressive Strength of Hardened Concrete Cylinders. *Annual Book of ASTM Standards*. West Conshohocken, PA : ASTM International, 2006.
- 69. ASTM C 469: Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression. *Annual Book of ASTM Standards*. West Conshohocken, PA : ASTM International, 2006.
- 70. AASHTO T 277-07: Standard Method of Test for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration. *Standard Specificatinos for Transportation Materials and Methods of Sampling and Testing, Part 2B:Tests.* Washington D.C.: AASHTO, 2008.

71. Parry, James M. Wisconsin's Experience with HPC Bridge Decks. HPC Bridge News, 2011. Issue 67.

APPENDICES

## Appendix A

## Validation Batches 28-Day Compressive Strength Data

| ID # | Cast Date | Cylinder 1<br>Result (psi) | Cylinder 2<br>Result (psi) | Range (psi) | Compressive<br>Strength (psi) |
|------|-----------|----------------------------|----------------------------|-------------|-------------------------------|
| D-1  | 1/23/2014 | 5137                       | 5180                       | 43          | 5160                          |
| D-2  | 1/30/2014 | 5062                       | 4802                       | 260         | 4930                          |
| D-3  | 1/30/2014 | 5017                       | 5137                       | 120         | 5080                          |
| D-4  | 2/4/2014  | 5452                       | 5427                       | 25          | 5440                          |
| D-5  | 2/4/2014  | 5438                       | 5321                       | 117         | 5380                          |

 TABLE A.1: TDOT Class D Validation 28-Day Compressive Strength

 TABLE A.2: 50/35/15 Validation 28-Day Compressive Strength

| ID # | Cast Date | Cylinder 1<br>Result (psi) | Cylinder 2<br>Result (psi) | Range (psi) | Compressive<br>Strength (psi) |
|------|-----------|----------------------------|----------------------------|-------------|-------------------------------|
| S-1  | 5/7/2014  | 6303                       | 6431                       | 128         | 6370                          |
| S-2  | 5/7/2014  | 6426                       | 6592                       | 166         | 6510                          |
| S-3  | 5/8/2014  | 6281                       | 6277                       | 4           | 6280                          |
| S-4  | 5/8/2014  | 6181                       | 6179                       | 2           | 6180                          |
| S-5  | 5/8/2014  | 5828                       | 6221                       | 393         | 6030                          |

## Appendix B

#### Validation Batches 56-Day Compressive Strength Data

| ID # | Cast Date | Cylinder 1<br>Result (psi) | Cylinder 2<br>Result (psi) | Range (psi) | Compressive<br>Strength (psi) |
|------|-----------|----------------------------|----------------------------|-------------|-------------------------------|
| D-1  | 1/23/2014 | 5935                       | 5672                       | 263         | 5800                          |
| D-2  | 1/30/2014 | 5611                       | 5840                       | 329         | 5730                          |
| D-3  | 1/30/2014 | 5589                       | 5974                       | 385         | 5780                          |
| D-4  | 2/4/2014  | 6015                       | 6033                       | 18          | 6020                          |
| D-5  | 2/4/2014  | 6073                       | 5999                       | 74          | 6040                          |

 TABLE B.1: TDOT Class D Validation 56-Day Compressive Strength

 TABLE B.2: 50/35/15 Validation 56-Day Compressive Strength

| ID # | Cast Date | Cylinder 1<br>Result (psi) | Cylinder 2<br>Result (psi) | Range (psi) | Compressive<br>Strength (psi) |
|------|-----------|----------------------------|----------------------------|-------------|-------------------------------|
| S-1  | 5/7/2014  | 7104                       | 7098                       | 6           | 7100                          |
| S-2  | 5/7/2014  | 6903                       | 7030                       | 127         | 6970                          |
| S-3  | 5/8/2014  | 7107                       | 7150                       | 43          | 7130                          |
| S-4  | 5/8/2014  | 6747                       | 6712                       | 35          | 6730                          |
| S-5  | 5/8/2014  | 6846                       | 6772                       | 74          | 6810                          |

## Appendix C

# TABLE C.1: TDOT Class D Validation 28-Day Static Modulus of Elasticity

Validation Batches 28-Day Static Modulus of Elasticity Data

| ID # | Cast Date | Run 1 (psi) | Run 2 (psi) | Range (psi) | Static Modulus<br>of Elasticity<br>(psi) |
|------|-----------|-------------|-------------|-------------|------------------------------------------|
| D-1  | 1/23/2014 | 4300000     | 4350000     | 50000       | 4350000                                  |
| D-2  | 1/30/2014 | 4250000     | 4220000     | 30000       | 4250000                                  |
| D-3  | 1/30/2014 | 4390000     | 4390000     | 0           | 4400000                                  |
| D-4  | 2/4/2014  | 4340000     | 4340000     | 0           | 4350000                                  |
| D-5  | 2/4/2014  | 4320000     | 4320000     | 0           | 4300000                                  |

 TABLE C.2: 50/35/15 Validation 28-Day Static Modulus of Elasticity

| ID # | Cast Date | Run 1 (psi) | Run 2 (psi) | Range (psi) | Static Modulus<br>of Elasticity<br>(psi) |
|------|-----------|-------------|-------------|-------------|------------------------------------------|
| S-1  | 5/7/2014  | 4610000     | 4580000     | 30000       | 4600000                                  |
| S-2  | 5/7/2014  | 4460000     | 4510000     | 50000       | 4500000                                  |
| S-3  | 5/8/2014  | 4420000     | 4430000     | 10000       | 4450000                                  |
| S-4  | 5/8/2014  | 4590000     | 4520000     | 70000       | 4550000                                  |
| S-5  | 5/8/2014  | 4550000     | 4560000     | 10000       | 4550000                                  |

## Appendix D

| TABLE D.1. TDOT Class D Valuation 50-Day State Modulus of Elasticity |           |             |             |             |                                          |  |
|----------------------------------------------------------------------|-----------|-------------|-------------|-------------|------------------------------------------|--|
| ID #                                                                 | Cast Date | Run 1 (psi) | Run 2 (psi) | Range (psi) | Static Modulus<br>of Elasticity<br>(psi) |  |
| D-1                                                                  | 1/23/2014 | 4300000     | 4310000     | 10000       | 4300000                                  |  |
| D-2                                                                  | 1/30/2014 | 4480000     | 4490000     | 10000       | 4500000                                  |  |
| D-3                                                                  | 1/30/2014 | 4410000     | 4410000     | 0           | 4400000                                  |  |
| D-4                                                                  | 2/4/2014  | 4410000     | 4350000     | 60000       | 4400000                                  |  |
| D-5                                                                  | 2/4/2014  | 4390000     | 4300000     | 90000       | 4350000                                  |  |

#### Validation Batches 56-Day Static Modulus of Elasticity Data

TABLE D.1: TDOT Class D Validation 56-Day Static Modulus of Elasticity

 TABLE D.2: 50/35/15 Validation 56-Day Static Modulus of Elasticity

| ID # | Cast Date | Run 1 (psi) | Run 2 (psi) | Range (psi) | Static Modulus<br>of Elasticity<br>(psi) |
|------|-----------|-------------|-------------|-------------|------------------------------------------|
| S-1  | 5/7/2014  | 4570000     | 4570000     | 0           | 4550000                                  |
| S-2  | 5/7/2014  | 4780000     | 4740000     | 40000       | 4750000                                  |
| S-3  | 5/8/2014  | 4690000     | 4660000     | 30000       | 4650000                                  |
| S-4  | 5/8/2014  | 5030000     | 5020000     | 10000       | 5050000                                  |
| S-5  | 5/8/2014  | Damaged     |             |             |                                          |

## Appendix E

#### Validation Batches 56-Day Hardened Concrete Absorption Data

| ID# | Cylinder 1<br>(%) | Cylinder 2<br>(%) | Cylinder 3<br>(%) | Range (%) | Absorption<br>(%) |
|-----|-------------------|-------------------|-------------------|-----------|-------------------|
| D-1 | 5.63              | 5.41              | 5.44              | 0.22      | 5.5               |
| D-2 | 5.27              | 5.29              | 5.53              | 0.26      | 5.4               |
| D-3 | 5.54              | 5.36              | 5.67              | 0.31      | 5.5               |
| D-4 | 5.28              | 5.05              | 5.3               | 0.25      | 5.2               |
| D-5 | 5.33              | 5.49              | 5.24              | 0.25      | 5.4               |

**TABLE E.1: TDOT Class D Validation 56-Day Absorption** 

TABLE E.2: 50/35/15 Validation 56-Day Absorption

| ID# | Cylinder 1<br>(%) | Cylinder 2<br>(%) | Cylinder 3<br>(%) | Range (%) | Absorption<br>(%) |
|-----|-------------------|-------------------|-------------------|-----------|-------------------|
| S-1 | 5.45              | 5.50              | 5.57              | 0.12      | 5.5               |
| S-2 | 5.05              | 5.36              | 5.44              | 0.39      | 5.3               |
| S-3 | 5.52              | 5.50              | 5.43              | 0.09      | 5.5               |
| S-4 | 5.50              | 5.50              | 5.83              | 0.33      | 5.6               |
| S-5 | 5.31              | 5.28              | 5.2               | 0.11      | 5.3               |

## Appendix F

#### SR-RCP Batches 28-Day Compressive Strength Data

| ID # | Cast Date | Cylinder 1<br>Result (psi) | Cylinder 2<br>Result (psi) | Cylinder 3<br>Result (psi) | Range<br>(psi) | Compressive<br>Strength (psi) |
|------|-----------|----------------------------|----------------------------|----------------------------|----------------|-------------------------------|
| D-6  | 2/6/2014  | 5669                       | 5426                       | 5369                       | 300            | 5490                          |
| D-7  | 2/6/2014  | 5891                       | 5677                       | 5763                       | 214            | 5780                          |
| D-8  | 2/18/2014 | 5185                       | 5169                       | 5469                       | 300            | 5270                          |
| D-9  | 2/18/2014 | 5122                       | 5218                       | 5074                       | 144            | 5140                          |
| D-10 | 2/20/2014 | 5564                       | 5835                       | 5189                       | 646            | 5530                          |
| D-11 | 2/20/2014 | 5521                       | 5655                       | 5667                       | 146            | 5610                          |
| D-12 | 2/25/2014 | 5342                       | 5032                       | 5423                       | 391            | 5270                          |
| D-13 | 2/25/2014 | 5460                       | 5493                       | 5516                       | 56             | 5490                          |
| D-14 | 3/4/2014  | 5392                       | 5446                       | 5519                       | 127            | 5450                          |
| D-15 | 3/4/2014  | 5447                       | 5006                       | 5241                       | 441            | 5230                          |
| D-16 | 3/6/2014  | 5924                       | 5768                       | 5667                       | 257            | 5790                          |
| D-17 | 3/6/2014  | 6051                       | 5931                       | 6073                       | 142            | 6020                          |
| D-18 | 3/19/2014 | 5696                       | 5309                       | 5171                       | 525            | 5390                          |
| D-19 | 3/19/2014 | 5163                       | 5245                       | 5486                       | 323            | 5300                          |
| D-20 | 4/2/2014  | 5596                       | 6154                       | 5988                       | 558            | 5910                          |
| D-21 | 4/2/2014  | 5722                       | 5936                       | 6008                       | 286            | 5990                          |
| D-22 | 8/26/2014 | 4890                       | 5135                       | 4858                       | 277            | 4960                          |
| D-23 | 8/26/2014 | 5143                       | 5162                       | 5292                       | 149            | 5200                          |
| D-24 | 4/17/2014 | 5508                       | 5463                       | 5501                       | 45             | 5490                          |
| D-25 | 4/17/2014 | 4930                       | 4884                       | 4941                       | 57             | 4920                          |

 TABLE F.1: TDOT Class D 28-Day Compressive Strength
| ID # | Cast Date | Cylinder 1<br>Result (psi) | Cylinder 2<br>Result (psi) | Cylinder 3<br>Result (psi) | Range<br>(psi) | Compressive<br>Strength (psi) |
|------|-----------|----------------------------|----------------------------|----------------------------|----------------|-------------------------------|
| S-6  | 5/16/2014 | 6310                       | 6535                       | 5956                       | 579            | 6270                          |
| S-7  | 5/16/2014 | 6490                       | 6337                       | 6485                       | 153            | 6440                          |
| S-8  | 5/20/2014 | 6862                       | 6728                       | 6651                       | 311            | 6750                          |
| S-9  | 5/20/2014 | 6725                       | 6467                       | 6681                       | 258            | 6620                          |
| S-10 | 5/23/2014 | 6307                       | 6563                       | 6799                       | 492            | 6560                          |
| S-11 | 5/23/2014 | 6643                       | 6500                       | 6469                       | 174            | 6540                          |
| S-12 | 7/23/2014 | 6845                       | 7758                       | 7641                       | 913            | 7420                          |
| S-13 | 7/23/2014 | 7049                       | 7306                       | 7468                       | 419            | 7270                          |
| S-14 | 7/11/2014 | 7146                       | 6912                       | 6793                       | 353            | 6950                          |
| S-15 | 7/11/2014 | 7366                       | 7304                       | 7037                       | 362            | 7240                          |
| S-16 | 6/3/2014  | 6862                       | 8044                       | 7505                       | 1182           | 7470                          |
| S-17 | 6/3/2014  | 6270                       | 6503                       | 6634                       | 364            | 6400                          |
| S-18 | 6/5/2014  | 7263                       | 6887                       | 7038                       | 376            | 7060                          |
| S-19 | 6/5/2014  | 6323                       | 6343                       | 6432                       | 109            | 6370                          |
| S-20 | 6/10/2014 | 7281                       | 6476                       | 6992                       | 805            | 6920                          |
| S-21 | 6/10/2014 | 7214                       | 7407                       | 6623                       | 784            | 7080                          |
| S-22 | 6/12/2014 | 7327                       | 7548                       | 7022                       | 526            | 7300                          |
| S-23 | 6/12/2014 | 7155                       | 7433                       | 7331                       | 278            | 7310                          |
| S-24 | 7/9/2014  | 7057                       | 7185                       | 7078                       | 128            | 7110                          |
| S-25 | 7/9/2014  | 6472                       | 6905                       | 6853                       | 433            | 6740                          |

TABLE F.2: 50/35/15 28-Day Compressive Strength

## Appendix G

### SR-RCP Batches 28-Day Accelerated Compressive Strength Data

| ID # | Cast Date | Cylinder 1<br>Result (psi) | Cylinder 2<br>Result (psi) | Cylinder 3<br>Result (psi) | Range<br>(psi) | Compressive<br>Strength (psi) |
|------|-----------|----------------------------|----------------------------|----------------------------|----------------|-------------------------------|
| D-6  | 2/6/2014  | 6651                       | 6479                       | 6297                       | 354            | 6480                          |
| D-7  | 2/6/2014  | 7039                       | 7100                       | 6833                       | 267            | 6990                          |
| D-8  | 2/18/2014 | 6079                       | 6020                       | 6241                       | 221            | 6110                          |
| D-9  | 2/18/2014 | 6011                       | 6092                       | 6184                       | 173            | 6100                          |
| D-10 | 2/20/2014 | 6609                       | 6469                       | 6494                       | 140            | 6520                          |
| D-11 | 2/20/2014 | 6207                       | 6503                       | 6716                       | 509            | 6480                          |
| D-12 | 2/25/2014 | 6607                       | 6267                       | 5968                       | 639            | 6280                          |
| D-13 | 2/25/2014 | 6389                       | 6353                       | 6491                       | 138            | 6410                          |
| D-14 | 3/4/2014  | 6414                       | 6025                       | 6472                       | 447            | 6300                          |
| D-15 | 3/4/2014  | 6092                       | 5653                       | 5473                       | 619            | 5740                          |
| D-16 | 3/6/2014  | 6519                       | 6377                       | 6628                       | 251            | 6510                          |
| D-17 | 3/6/2014  | 6875                       | 6602                       | 7098                       | 496            | 6860                          |
| D-18 | 3/19/2014 | 6319                       | 6449                       | 6283                       | 166            | 6350                          |
| D-19 | 3/19/2014 | 6030                       | 5958                       | 6194                       | 236            | 6060                          |
| D-20 | 4/2/2014  | 6620                       | 7154                       | 6836                       | 534            | 6870                          |
| D-21 | 4/2/2014  | 7197                       | 7004                       | 6473                       | 724            | 6890                          |
| D-22 | 8/26/2014 | 5675                       | 5959                       | 5932                       | 284            | 5860                          |
| D-23 | 8/26/2014 | 5747                       | 5746                       | 5636                       | 111            | 5710                          |
| D-24 | 4/17/2014 | 6331                       | 6313                       | 6062                       | 269            | 6240                          |
| D-25 | 4/17/2014 | 5687                       | 5338                       | 5854                       | 516            | 5630                          |

 TABLE G.1: TDOT Class D 28-Day Accelerated Compressive Strength

| ID # | Cast Date | Cylinder 1<br>Result (psi) | Cylinder 2<br>Result (psi) | Cylinder 3<br>Result (psi) | Range<br>(psi) | Compressive<br>Strength (psi) |
|------|-----------|----------------------------|----------------------------|----------------------------|----------------|-------------------------------|
| S-6  | 5/16/2014 | 6817                       | 7119                       | 7302                       | 485            | 7080                          |
| S-7  | 5/16/2014 | 7355                       | 6875                       | 6606                       | 749            | 6950                          |
| S-8  | 5/20/2014 | 7337                       | 7633                       | 6973                       | 656            | 7310                          |
| S-9  | 5/20/2014 | 7292                       | 7157                       | 7358                       | 201            | 7270                          |
| S-10 | 5/23/2014 | 7938                       | 7345                       | 7770                       | 593            | 7680                          |
| S-11 | 5/23/2014 | 6895                       | 6531                       | 7165                       | 634            | 6860                          |
| S-12 | 7/23/2014 | 7452                       | 8280                       | 7950                       | 828            | 7890                          |
| S-13 | 7/23/2014 | 7863                       | 7527                       | 8084                       | 557            | 7830                          |
| S-14 | 7/11/2014 | 6993                       | 7413                       | 7521                       | 528            | 7310                          |
| S-15 | 7/11/2014 | 7519                       | 7849                       | 7353                       | 330            | 7570                          |
| S-16 | 6/3/2014  | 7424                       | 7625                       | 6430                       | 1195           | 7160                          |
| S-17 | 6/3/2014  | 7547                       | 7785                       | 6893                       | 892            | 7410                          |
| S-18 | 6/5/2014  | 7406                       | 7830                       | 8015                       | 609            | 7750                          |
| S-19 | 6/5/2014  | 6406                       | 6862                       | 7249                       | 843            | 6840                          |
| S-20 | 6/10/2014 | 7199                       | 7330                       | 7422                       | 223            | 7320                          |
| S-21 | 6/10/2014 | 7362                       | 7774                       | 7652                       | 412            | 7600                          |
| S-22 | 6/12/2014 | 7805                       | 7751                       | 7711                       | 94             | 7760                          |
| S-23 | 6/12/2014 | 7854                       | 7622                       | 7800                       | 232            | 7760                          |
| S-24 | 7/9/2014  | 7518                       | 7922                       | 7511                       | 411            | 7650                          |
| S-25 | 7/9/2014  | 8176                       | 7485                       | 7728                       | 691            | 7800                          |

TABLE G.2: 50/35/15 28-Day Accelerated Compressive Strength

# Appendix H

### SR-RCP Batches 56-Day Compressive Strength Data

| ID # | Cast Date | Cylinder 1<br>Result (psi) | Cylinder 2<br>Result (psi) | Cylinder 3<br>Result (psi) | Range<br>(psi) | Compressive<br>Strength (psi) |
|------|-----------|----------------------------|----------------------------|----------------------------|----------------|-------------------------------|
| D-6  | 2/6/2014  | 6170                       | 6092                       | 6168                       | 76             | 6140                          |
| D-7  | 2/6/2014  | 6075                       | 6139                       | 6278                       | 203            | 6160                          |
| D-8  | 2/18/2014 | 6012                       | 5583                       | 5961                       | 429            | 5850                          |
| D-9  | 2/18/2014 | 5858                       | 5925                       | 5561                       | 364            | 5780                          |
| D-10 | 2/20/2014 | 5959                       | 6234                       | 6371                       | 412            | 6190                          |
| D-11 | 2/20/2014 | 5983                       | 6625                       | 6361                       | 642            | 6320                          |
| D-12 | 2/25/2014 | 5880                       | 5743                       | 5851                       | 137            | 5830                          |
| D-13 | 2/25/2014 | 6408                       | 6228                       | 6299                       | 180            | 6310                          |
| D-14 | 3/4/2014  | 5397                       | 6436                       | 6459                       | 1062           | 6100                          |
| D-15 | 3/4/2014  | 5569                       | 5631                       | 5835                       | 266            | 5680                          |
| D-16 | 3/6/2014  | 6194                       | 6301                       | 6193                       | 108            | 6230                          |
| D-17 | 3/6/2014  | 6949                       | 6502                       | 6845                       | 447            | 6770                          |
| D-18 | 3/19/2014 | 6414                       | 6370                       | 5894                       | 520            | 6230                          |
| D-19 | 3/19/2014 | 5958                       | 5984                       | 6234                       | 276            | 6060                          |
| D-20 | 4/2/2014  | 6563                       | 7133                       | 7027                       | 570            | 6910                          |
| D-21 | 4/2/2014  | 6818                       | 6928                       | 6977                       | 159            | 6910                          |
| D-22 | 8/26/2014 | 5245                       | 5580                       | 5721                       | 476            | 5520                          |
| D-23 | 8/26/2014 | 5503                       | 5446                       | 5512                       | 72             | 5490                          |
| D-24 | 4/17/2014 | 6091                       | 5849                       | 5975                       | 242            | 5970                          |
| D-25 | 4/17/2014 | 5610                       | 5948                       | 5886                       | 338            | 5820                          |

 TABLE H.1: TDOT Class D 56-Day Compressive Strength

| ID # | Cast Date | Cylinder 1<br>Result (psi) | Cylinder 2<br>Result (psi) | Cylinder 3<br>Result (psi) | Range<br>(psi) | Compressive<br>Strength (psi) |
|------|-----------|----------------------------|----------------------------|----------------------------|----------------|-------------------------------|
| S-6  | 5/16/2014 | 6859                       | 6734                       | 6622                       | 237            | 6740                          |
| S-7  | 5/16/2014 | 6840                       | 6938                       | 7129                       | 289            | 6970                          |
| S-8  | 5/20/2014 | 6600                       | 6822                       | 6908                       | 308            | 6780                          |
| S-9  | 5/20/2014 | 6834                       | 6996                       | 6778                       | 218            | 6870                          |
| S-10 | 5/23/2014 | 7489                       | 7918                       | 8154                       | 665            | 7850                          |
| S-11 | 5/23/2014 | 7192                       | 6997                       | 7015                       | 195            | 7070                          |
| S-12 | 7/23/2014 | 7230                       | 7666                       | 6956                       | 710            | 7280                          |
| S-13 | 7/23/2014 | 7623                       | 7022                       | 7538                       | 601            | 7390                          |
| S-14 | 7/11/2014 | 7209                       | 7339                       | 7286                       | 139            | 7280                          |
| S-15 | 7/11/2014 | 7790                       | 7947                       | 7832                       | 157            | 7860                          |
| S-16 | 6/3/2014  | 6941                       | 7620                       | 7822                       | 881            | 7460                          |
| S-17 | 6/3/2014  | 6740                       | 6942                       | 7110                       | 370            | 6930                          |
| S-18 | 6/5/2014  | 7687                       | 7352                       | 7637                       | 335            | 7560                          |
| S-19 | 6/5/2014  | 7147                       | 7255                       | 6725                       | 530            | 7040                          |
| S-20 | 6/10/2014 | 6992                       | 7351                       | 7138                       | 359            | 7160                          |
| S-21 | 6/10/2014 | 7265                       | 7287                       | 7459                       | 194            | 7340                          |
| S-22 | 6/12/2014 | 7625                       | 7130                       | 7807                       | 677            | 7520                          |
| S-23 | 6/12/2014 | 7900                       | 7928                       | 7661                       | 267            | 7830                          |
| S-24 | 7/9/2014  | 7010                       | 7484                       | 7399                       | 474            | 7300                          |
| S-25 | 7/9/2014  | 7703                       | 7464                       | 7555                       | 229            | 7570                          |

TABLE H.2: 50/35/15 56-Day Compressive Strength

## Appendix I

### SR-RCP Batches 91-day Compressive Strength Data

| ID # | Cast Date | Cylinder 1<br>Result (psi) | Cylinder 2<br>Result (psi) | Cylinder 3<br>Result (psi) | Range<br>(psi) | Compressive<br>Strength (psi) |
|------|-----------|----------------------------|----------------------------|----------------------------|----------------|-------------------------------|
| D-6  | 2/6/2014  | 6991                       | 7287                       | 7122                       | 296            | 7130                          |
| D-7  | 2/6/2014  | 6603                       | 6773                       | 7012                       | 409            | 6800                          |
| D-8  | 2/18/2014 | 6228                       | 6534                       | 6513                       | 306            | 6430                          |
| D-9  | 2/18/2014 | 6338                       | 6508                       | 6553                       | 215            | 6470                          |
| D-10 | 2/20/2014 | 6905                       | 7093                       | 6702                       | 391            | 6900                          |
| D-11 | 2/20/2014 | 6858                       | 6770                       | 7166                       | 396            | 6930                          |
| D-12 | 2/25/2014 | 6589                       | 6908                       | 6716                       | 319            | 6740                          |
| D-13 | 2/25/2014 | 6728                       | 6783                       | 6982                       | 254            | 6830                          |
| D-14 | 3/4/2014  | 6716                       | 6733                       | 6766                       | 50             | 6740                          |
| D-15 | 3/4/2014  | 6191                       | 6415                       | 6453                       | 224            | 6350                          |
| D-16 | 3/6/2014  | 6669                       | 7188                       | 7095                       | 519            | 6980                          |
| D-17 | 3/6/2014  | 6578                       | 7442                       | 7279                       | 864            | 7100                          |
| D-18 | 3/19/2014 | 6425                       | 6771                       | 6758                       | 333            | 6650                          |
| D-19 | 3/19/2014 | 6792                       | 6510                       | 6540                       | 282            | 6610                          |
| D-20 | 4/2/2014  | 7267                       | 6913                       | 7448                       | 535            | 7210                          |
| D-21 | 4/2/2014  | 7266                       | 7294                       | 7448                       | 182            | 7340                          |
| D-22 | 8/26/2014 | 5929                       | 6158                       | 6090                       | 229            | 6060                          |
| D-23 | 8/26/2014 | 5991                       | 6131                       | 5814                       | 317            | 5980                          |
| D-24 | 4/17/2014 | 6705                       | 6656                       | 6448                       | 257            | 6600                          |
| D-25 | 4/17/2014 | 6225                       | 6148                       | 5997                       | 228            | 6120                          |

 TABLE I.1: TDOT Class D 91-Day Compressive Strength

| ID # | Cast Date | Cylinder 1<br>Result (psi) | Cylinder 2<br>Result (psi) | Cylinder 3<br>Result (psi) | Range<br>(psi) | Compressive<br>Strength (psi) |
|------|-----------|----------------------------|----------------------------|----------------------------|----------------|-------------------------------|
| S-6  | 5/16/2014 | 7147                       | 7397                       | 6915                       | 482            | 7150                          |
| S-7  | 5/16/2014 | 7331                       | 7362                       | 6436                       | 926            | 7040                          |
| S-8  | 5/20/2014 | 7324                       | 6918                       | 7416                       | 498            | 7220                          |
| S-9  | 5/20/2014 | 7322                       | 7396                       | 7627                       | 305            | 7450                          |
| S-10 | 5/23/2014 | 7155                       | 7561                       | 7524                       | 406            | 7410                          |
| S-11 | 5/23/2014 | 7334                       | 7378                       | 7445                       | 111            | 7390                          |
| S-12 | 7/23/2014 | 7862                       | 8258                       | 8133                       | 396            | 8080                          |
| S-13 | 7/23/2014 | 7527                       | 7943                       | 7947                       | 420            | 7810                          |
| S-14 | 7/11/2014 | 7368                       | 7687                       | 7291                       | 396            | 7450                          |
| S-15 | 7/11/2014 | 7701                       | 7788                       | 7924                       | 223            | 7800                          |
| S-16 | 6/3/2014  | 7561                       | 7342                       | 7984                       | 642            | 7630                          |
| S-17 | 6/3/2014  | 7152                       | 7024                       | 7194                       | 170            | 7120                          |
| S-18 | 6/5/2014  | 7924                       | 7118                       | 7557                       | 806            | 7530                          |
| S-19 | 6/5/2014  | 7004                       | 7250                       | 7430                       | 426            | 7230                          |
| S-20 | 6/10/2014 | 7320                       | 7661                       | 7624                       | 341            | 7540                          |
| S-21 | 6/10/2014 | 7937                       | 7326                       | 8012                       | 686            | 7760                          |
| S-22 | 6/12/2014 | 7861                       | 7764                       | 7843                       | 97             | 7820                          |
| S-23 | 6/12/2014 | 8269                       | 7738                       | 8354                       | 616            | 8120                          |
| S-24 | 7/9/2014  | 8019                       | 7761                       | 7606                       | 413            | 7800                          |
| S-25 | 7/9/2014  | 7971                       | 7823                       | 7489                       | 482            | 7760                          |

TABLE I.2: 50/35/15 91-Day Compressive Strength

## Appendix J

### 28-Day Surface Resistivity Data

### (immersion curing factor of 1.1 applied to final result)

| ID # | Cast Date | Cylinder 1<br>Result<br>(kilohm-cm) | Cylinder 2<br>Result<br>(kilohm-cm) | Cylinder 3<br>Result<br>(kilohm-cm) | Range<br>(kilohm-cm) | Surface<br>Resistivity<br>(kilohm-cm) |
|------|-----------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------|---------------------------------------|
| D-6  | 2/6/2014  | 13.5                                | 13.7                                | 12.9                                | 0.8                  | 14.7                                  |
| D-7  | 2/6/2014  | 12.1                                | 13.4                                | 12.7                                | 1.3                  | 14.0                                  |
| D-8  | 2/18/2014 | 12.8                                | 13.2                                | 13.3                                | 0.5                  | 14.4                                  |
| D-9  | 2/18/2014 | 12.6                                | 13.3                                | 12.7                                | 0.7                  | 14.2                                  |
| D-10 | 2/20/2014 | 12.4                                | 12.6                                | 12.2                                | 0.4                  | 13.6                                  |
| D-11 | 2/20/2014 | 12.5                                | 11.7                                | 12.6                                | 0.9                  | 13.5                                  |
| D-12 | 2/25/2014 | 12.8                                | 13.3                                | 13.2                                | 0.5                  | 14.4                                  |
| D-13 | 2/25/2014 | 12.5                                | 12.3                                | 13.1                                | 0.8                  | 13.9                                  |
| D-14 | 3/4/2014  | 12.4                                | 11.8                                | 12.8                                | 1                    | 13.6                                  |
| D-15 | 3/4/2014  | 12.1                                | 12.8                                | 12.6                                | 0.7                  | 13.8                                  |
| D-16 | 3/6/2014  | 12.6                                | 12                                  | 11.8                                | 0.8                  | 13.3                                  |
| D-17 | 3/6/2014  | 11                                  | 11.1                                | 11.8                                | 0.8                  | 12.4                                  |
| D-18 | 3/19/2014 | 12.7                                | 12.3                                | 12.6                                | 0.4                  | 13.8                                  |
| D-19 | 3/19/2014 | 12.2                                | 12.9                                | 12.4                                | 0.7                  | 13.8                                  |
| D-20 | 4/2/2014  | 12.5                                | 12.3                                | 12.6                                | 0.3                  | 13.7                                  |
| D-21 | 4/2/2014  | 12.3                                | 12.4                                | 13                                  | 0.7                  | 13.8                                  |
| D-22 | 8/26/2014 | 12.2                                | 12                                  | 12.1                                | 0.2                  | 13.3                                  |
| D-23 | 8/26/2014 | 11.5                                | 11.7                                | 11.5                                | 0.2                  | 12.7                                  |
| D-24 | 4/17/2014 | 13                                  | 12.5                                | 13.6                                | 1.1                  | 14.3                                  |
| D-25 | 4/17/2014 | 13.2                                | 12.5                                | 12.5                                | 0.7                  | 14.0                                  |

#### TABLE J.1: TDOT Class D 28-Day SR

| ID # | Cast Date | Cylinder 1<br>Result<br>(kilohm-cm) | Cylinder 2<br>Result<br>(kilohm-cm) | Cylinder 3<br>Result<br>(kilohm-cm) | Range<br>(kilohm-cm) | Surface<br>Resistivity<br>(kilohm-cm) |
|------|-----------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------|---------------------------------------|
| S-6  | 5/16/2014 | 28.9                                | 28.5                                | 26.9                                | 2                    | 30.9                                  |
| S-7  | 5/16/2014 | 29.7                                | 28                                  | 27.9                                | 1.8                  | 31.4                                  |
| S-8  | 5/20/2014 | 31.6                                | 29.2                                | 31.5                                | 2.4                  | 33.8                                  |
| S-9  | 5/20/2014 | 29.9                                | 29.6                                | 29.5                                | 0.4                  | 32.6                                  |
| S-10 | 5/23/2014 | 28.7                                | 28.4                                | 28.9                                | 0.5                  | 31.5                                  |
| S-11 | 5/23/2014 | 29.7                                | 28.2                                | 28.9                                | 1.5                  | 31.8                                  |
| S-12 | 7/23/2014 | 29.9                                | 30.6                                | 29.1                                | 1.5                  | 32.9                                  |
| S-13 | 7/23/2014 | 29.3                                | 24.7                                | 26.3                                | 4.6                  | 29.4                                  |
| S-14 | 7/11/2014 | 26.7                                | 26.3                                | 26.1                                | 0.6                  | 29.0                                  |
| S-15 | 7/11/2014 | 27.1                                | 26.7                                | 26.9                                | 0.4                  | 29.6                                  |
| S-16 | 6/3/2014  | 28.7                                | 30.4                                | 28.5                                | 1.9                  | 32.1                                  |
| S-17 | 6/3/2014  | 28.6                                | 25.7                                | 27.2                                | 2.9                  | 29.9                                  |
| S-18 | 6/5/2014  | 29.6                                | 31.1                                | 30                                  | 1.5                  | 33.3                                  |
| S-19 | 6/5/2014  | 28.9                                | 28.7                                | 29.6                                | 0.9                  | 32.0                                  |
| S-20 | 6/10/2014 | 30.9                                | 30.4                                | 29.5                                | 1.4                  | 33.3                                  |
| S-21 | 6/10/2014 | 30.9                                | 28                                  | 29.2                                | 2.9                  | 32.3                                  |
| S-22 | 6/12/2014 | 28.9                                | 28.1                                | 27.4                                | 1.5                  | 30.9                                  |
| S-23 | 6/12/2014 | 27.5                                | 27.5                                | 27.5                                | 0                    | 30.3                                  |
| S-24 | 7/9/2014  | 30.2                                | 29.8                                | 29.8                                | 0.4                  | 32.9                                  |
| S-25 | 7/9/2014  | 27.7                                | 30                                  | 27.9                                | 2.3                  | 31.4                                  |

TABLE J.2: 50/35/15 28-Day SR

## Appendix K

### 28-Day Accelerated Surface Resistivity Data

| ID # | Cast Date | Cylinder 1<br>Result<br>(kilohm-cm) | Cylinder 2<br>Result<br>(kilohm-cm) | Cylinder 3<br>Result<br>(kilohm-cm) | Range<br>(kilohm-cm) | Surface<br>Resistivity<br>(kilohm-cm) |
|------|-----------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------|---------------------------------------|
| D-6  | 2/6/2014  | 23.6                                | 23.8                                | 25.9                                | 2.3                  | 26.9                                  |
| D-7  | 2/6/2014  | 24.7                                | 23.6                                | 25.5                                | 1.9                  | 27.1                                  |
| D-8  | 2/18/2014 | 23.3                                | 23                                  | 23.4                                | 0.4                  | 25.6                                  |
| D-9  | 2/18/2014 | 23.2                                | 22.7                                | 23                                  | 0.5                  | 25.3                                  |
| D-10 | 2/20/2014 | 22.7                                | 22.5                                | 22.6                                | 0.2                  | 24.9                                  |
| D-11 | 2/20/2014 | 21.9                                | 21.9                                | 23.3                                | 1.4                  | 24.6                                  |
| D-12 | 2/25/2014 | 21.8                                | 23.5                                | 22.7                                | 1.7                  | 24.9                                  |
| D-13 | 2/25/2014 | 23.9                                | 22.9                                | 22.9                                | 1                    | 25.6                                  |
| D-14 | 3/4/2014  | 23.7                                | 22.2                                | 24.8                                | 2.6                  | 25.9                                  |
| D-15 | 3/4/2014  | 23.5                                | 21                                  | 23.8                                | 2.8                  | 25.0                                  |
| D-16 | 3/6/2014  | 23.4                                | 22.7                                | 22.5                                | 0.9                  | 25.2                                  |
| D-17 | 3/6/2014  | 23                                  | 23.1                                | 22.9                                | 0.2                  | 25.3                                  |
| D-18 | 3/19/2014 | 21.3                                | 21.9                                | 22.2                                | 0.9                  | 24.0                                  |
| D-19 | 3/19/2014 | 20.9                                | 22.2                                | 22.4                                | 1.5                  | 24.0                                  |
| D-20 | 4/2/2014  | 19.9                                | 20.9                                | 20.2                                | 1                    | 22.4                                  |
| D-21 | 4/2/2014  | 21.5                                | 20.5                                | 21.4                                | 1                    | 23.2                                  |
| D-22 | 8/26/2014 | 18.6                                | 19.8                                | 20.1                                | 1.5                  | 21.5                                  |
| D-23 | 8/26/2014 | 19                                  | 20                                  | 19.8                                | 1                    | 21.6                                  |
| D-24 | 4/17/2014 | 20.7                                | 21.3                                | 21.7                                | 1                    | 23.4                                  |
| D-25 | 4/17/2014 | 21.1                                | 22                                  | 21.6                                | 0.9                  | 23.7                                  |

TABLE K.1: TDOT Class D 28-Day Accelerated SR

| ID # | Cast Date | Cylinder 1<br>Result<br>(kilohm-cm) | Cylinder 2<br>Result<br>(kilohm-cm) | Cylinder 3<br>Result<br>(kilohm-cm) | Range<br>(kilohm-cm) | Surface<br>Resistivity<br>(kilohm-cm) |
|------|-----------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------|---------------------------------------|
| S-6  | 5/16/2014 | 37.6                                | 38.8                                | 40.5                                | 2.9                  | 42.9                                  |
| S-7  | 5/16/2014 | 39.8                                | 39.9                                | 40.5                                | 1.7                  | 44.1                                  |
| S-8  | 5/20/2014 | 44.3                                | 41.9                                | 41.1                                | 3.2                  | 46.7                                  |
| S-9  | 5/20/2014 | 41.5                                | 38.3                                | 41.8                                | 3.5                  | 44.6                                  |
| S-10 | 5/23/2014 | 38.6                                | 37.3                                | 38                                  | 1.3                  | 41.8                                  |
| S-11 | 5/23/2014 | 36.8                                | 38.4                                | 40.3                                | 3.5                  | 42.4                                  |
| S-12 | 7/23/2014 | 38.5                                | 38.4                                | 37                                  | 1.5                  | 41.8                                  |
| S-13 | 7/23/2014 | 37.5                                | 36.7                                | 38.4                                | 1.7                  | 41.3                                  |
| S-14 | 7/11/2014 | 39.4                                | 39                                  | 37.6                                | 1.8                  | 42.5                                  |
| S-15 | 7/11/2014 | 37.3                                | 37.9                                | 38.5                                | 1.2                  | 41.7                                  |
| S-16 | 6/3/2014  | 40.4                                | 38.2                                | 38.9                                | 2.2                  | 43.1                                  |
| S-17 | 6/3/2014  | 40.6                                | 39.7                                | 39.7                                | 0.9                  | 44.0                                  |
| S-18 | 6/5/2014  | 36.6                                | 36.3                                | 37.4                                | 1.1                  | 40.4                                  |
| S-19 | 6/5/2014  | 39.4                                | 39.4                                | 38.3                                | 1.1                  | 42.9                                  |
| S-20 | 6/10/2014 | 35.3                                | 35.9                                | 36.7                                | 1.4                  | 39.6                                  |
| S-21 | 6/10/2014 | 35.8                                | 33.7                                | 36.9                                | 3.2                  | 39.0                                  |
| S-22 | 6/12/2014 | 35.8                                | 38.5                                | 37.2                                | 2.7                  | 40.9                                  |
| S-23 | 6/12/2014 | 34.8                                | 36.5                                | 35.9                                | 1.7                  | 39.3                                  |
| S-24 | 7/9/2014  | 34.2                                | 36.1                                | 35.2                                | 1.9                  | 38.7                                  |
| S-25 | 7/9/2014  | 36.5                                | 36.3                                | 35.8                                | 0.7                  | 39.8                                  |

TABLE K.2: 50/35/15 28-Day Accelerated SR

# Appendix L

### 56-Day Surface Resistivity Data

### (immersion curing factor of 1.1 applied to final result)

| ID # | Cast Date | Cylinder 1<br>Result<br>(kilohm-cm) | Cylinder 2<br>Result<br>(kilohm-cm) | Cylinder 3<br>Result<br>(kilohm-cm) | Range<br>(kilohm-cm) | Surface<br>Resistivity<br>(kilohm-cm) |
|------|-----------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------|---------------------------------------|
| D-6  | 2/6/2014  | 17.1                                | 16.4                                | 17.4                                | 1                    | 18.7                                  |
| D-7  | 2/6/2014  | 15.8                                | 16.9                                | 15.7                                | 1.2                  | 17.7                                  |
| D-8  | 2/18/2014 | 18.4                                | 18.1                                | 18.9                                | 0.8                  | 20.3                                  |
| D-9  | 2/18/2014 | 16.7                                | 17.9                                | 17                                  | 1.2                  | 18.9                                  |
| D-10 | 2/20/2014 | 16.8                                | 17.2                                | 16.7                                | 0.5                  | 18.6                                  |
| D-11 | 2/20/2014 | 16.7                                | 16.5                                | 16.6                                | 0.2                  | 18.3                                  |
| D-12 | 2/25/2014 | 17.1                                | 18.2                                | 17.6                                | 1.1                  | 19.4                                  |
| D-13 | 2/25/2014 | 16.9                                | 16.7                                | 17.2                                | 0.5                  | 18.6                                  |
| D-14 | 3/4/2014  | 18                                  | 17                                  | 18.5                                | 1.5                  | 19.6                                  |
| D-15 | 3/4/2014  | 18.2                                | 20.5                                | 19.1                                | 2.3                  | 21.2                                  |
| D-16 | 3/6/2014  | 17.8                                | 16.5                                | 17                                  | 1.3                  | 18.8                                  |
| D-17 | 3/6/2014  | 15.5                                | 16.2                                | 16.1                                | 0.7                  | 17.5                                  |
| D-18 | 3/19/2014 | 18.8                                | 18                                  | 17.3                                | 1.5                  | 19.8                                  |
| D-19 | 3/19/2014 | 17.9                                | 18.2                                | 18.4                                | 0.5                  | 20.0                                  |
| D-20 | 4/2/2014  | 17                                  | 16.4                                | 16.6                                | 0.6                  | 18.3                                  |
| D-21 | 4/2/2014  | 16.4                                | 16.7                                | 17                                  | 0.4                  | 18.4                                  |
| D-22 | 8/26/2014 | 18                                  | 18                                  | 17.7                                | 0.3                  | 19.7                                  |
| D-23 | 8/26/2014 | 17.9                                | 17                                  | 17.7                                | 0.9                  | 19.3                                  |
| D-24 | 4/17/2014 | 15.6                                | 14.8                                | 14.5                                | 1.1                  | 16.5                                  |
| D-25 | 4/17/2014 | 15                                  | 14.7                                | 15.8                                | 1.1                  | 16.7                                  |

#### TABLE L.1: TDOT Class D 56-Day SR

| ID # | Cast Date | Cylinder 1<br>Result<br>(kilohm-cm) | Cylinder 2<br>Result<br>(kilohm-cm) | Cylinder 3<br>Result<br>(kilohm-cm) | Range<br>(kilohm-cm) | Surface<br>Resistivity<br>(kilohm-cm) |
|------|-----------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------|---------------------------------------|
| S-6  | 5/16/2014 | 39.2                                | 36.7                                | 34.3                                | 4.9                  | 40.4                                  |
| S-7  | 5/16/2014 | 37.4                                | 36.6                                | 37.4                                | 0.8                  | 40.8                                  |
| S-8  | 5/20/2014 | 42.9                                | 40.2                                | 39.6                                | 3.3                  | 45.0                                  |
| S-9  | 5/20/2014 | 40.2                                | 40                                  | 39.9                                | 0.3                  | 44.0                                  |
| S-10 | 5/23/2014 | 49.3                                | 45.2                                | 42.3                                | 7                    | 50.2                                  |
| S-11 | 5/23/2014 | 46                                  | 42.3                                | 44.4                                | 3.7                  | 48.7                                  |
| S-12 | 7/23/2014 | 42.6                                | 43.2                                | 42.9                                | 0.6                  | 47.2                                  |
| S-13 | 7/23/2014 | 40.3                                | 39.1                                | 40.2                                | 1.2                  | 43.9                                  |
| S-14 | 7/11/2014 | 36.5                                | 35.2                                | 35.5                                | 1.3                  | 39.3                                  |
| S-15 | 7/11/2014 | 36.5                                | 35.4                                | 35                                  | 1.5                  | 39.2                                  |
| S-16 | 6/3/2014  | 40                                  | 39.3                                | 39.2                                | 0.8                  | 43.5                                  |
| S-17 | 6/3/2014  | 35.2                                | 36.5                                | 36.4                                | 1.3                  | 39.6                                  |
| S-18 | 6/5/2014  | 43.7                                | 43                                  | 41.7                                | 2                    | 47.1                                  |
| S-19 | 6/5/2014  | 41.2                                | 38.8                                | 41.3                                | 2.5                  | 44.5                                  |
| S-20 | 6/10/2014 | 37.3                                | 41.5                                | 38.9                                | 4.2                  | 43.2                                  |
| S-21 | 6/10/2014 | 39                                  | 35.9                                | 40.7                                | 4.8                  | 42.4                                  |
| S-22 | 6/12/2014 | 36.9                                | 35.7                                | 35.3                                | 1.6                  | 39.6                                  |
| S-23 | 6/12/2014 | 34.9                                | 35.2                                | 33.9                                | 1.3                  | 38.1                                  |
| S-24 | 7/9/2014  | 38.5                                | 37.5                                | 38.8                                | 1.3                  | 42.1                                  |
| S-25 | 7/9/2014  | 37.8                                | 36.4                                | 38.5                                | 2.1                  | 41.3                                  |

TABLE L.2: 50/35/15 56-Day SR

## Appendix M

### 91-Day Surface Resistivity Data

### (immersion curing factor of 1.1 applied to final result)

| ID # | Cast Date | Cylinder 1<br>Result<br>(kilohm-cm) | Cylinder 2<br>Result<br>(kilohm-cm) | Cylinder 3<br>Result<br>(kilohm-cm) | Range<br>(kilohm-cm) | Surface<br>Resistivity<br>(kilohm-cm) |
|------|-----------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------|---------------------------------------|
| D-6  | 2/6/2014  | 26.3                                | 23.5                                | 25.7                                | 2.8                  | 27.7                                  |
| D-7  | 2/6/2014  | 24.8                                | 25.8                                | 23.2                                | 2.6                  | 27.1                                  |
| D-8  | 2/18/2014 | 23.1                                | 24                                  | 23.1                                | 0.9                  | 25.7                                  |
| D-9  | 2/18/2014 | 22                                  | 22.4                                | 21.4                                | 1                    | 24.1                                  |
| D-10 | 2/20/2014 | 24.5                                | 24.5                                | 23.8                                | 0.7                  | 26.7                                  |
| D-11 | 2/20/2014 | 24.6                                | 23.6                                | 25.6                                | 2                    | 27.1                                  |
| D-12 | 2/25/2014 | 26.5                                | 25.3                                | 23.7                                | 2.8                  | 27.7                                  |
| D-13 | 2/25/2014 | 24                                  | 23.4                                | 24.7                                | 1.4                  | 26.4                                  |
| D-14 | 3/4/2014  | 22.5                                | 23                                  | 22.4                                | 0.6                  | 24.9                                  |
| D-15 | 3/4/2014  | 21.9                                | 23.3                                | 22.7                                | 1.4                  | 24.9                                  |
| D-16 | 3/6/2014  | 23                                  | 22.6                                | 21.6                                | 1.4                  | 24.6                                  |
| D-17 | 3/6/2014  | 18.9                                | 19.7                                | 21.1                                | 2.2                  | 21.9                                  |
| D-18 | 3/19/2014 | 23.5                                | 22.4                                | 21.9                                | 1.6                  | 24.9                                  |
| D-19 | 3/19/2014 | 23                                  | 23.8                                | 22.2                                | 1.6                  | 25.3                                  |
| D-20 | 4/2/2014  | 23                                  | 22.6                                | 21.9                                | 1.1                  | 24.8                                  |
| D-21 | 4/2/2014  | 22.5                                | 23.3                                | 22.1                                | 1.2                  | 24.9                                  |
| D-22 | 8/26/2014 | 23.4                                | 24.3                                | 21.9                                | 2.4                  | 25.5                                  |
| D-23 | 8/26/2014 | 21.7                                | 21.3                                | 20.5                                | 1.2                  | 23.3                                  |
| D-24 | 4/17/2014 | 23.9                                | 25.9                                | 24.7                                | 2                    | 27.3                                  |
| D-25 | 4/17/2014 | 23.5                                | 23.7                                | 22.8                                | 0.9                  | 25.7                                  |

#### TABLE M.1: TDOT Class D 91-Day SR

| ID # | Cast Date | Cylinder 1<br>Result<br>(kilohm-cm) | Cylinder 2<br>Result<br>(kilohm-cm) | Cylinder 3<br>Result<br>(kilohm-cm) | Range<br>(kilohm-cm) | Surface<br>Resistivity<br>(kilohm-cm) |
|------|-----------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------|---------------------------------------|
| S-6  | 5/16/2014 | 44.2                                | 41.8                                | 40.9                                | 3.3                  | 46.5                                  |
| S-7  | 5/16/2014 | 41.6                                | 40.9                                | 41.3                                | 0.7                  | 45.4                                  |
| S-8  | 5/20/2014 | 51                                  | 45.9                                | 50.2                                | 5.1                  | 53.9                                  |
| S-9  | 5/20/2014 | 45.6                                | 46.1                                | 47.5                                | 1.9                  | 51.0                                  |
| S-10 | 5/23/2014 | 45.7                                | 46.7                                | 46                                  | 1                    | 50.7                                  |
| S-11 | 5/23/2014 | 46.1                                | 44.2                                | 47.4                                | 3.2                  | 50.5                                  |
| S-12 | 7/23/2014 | 59.2                                | 58.3                                | 59                                  | 0.9                  | 64.7                                  |
| S-13 | 7/23/2014 | 56.2                                | 55.9                                | 54.5                                | 1.7                  | 61.1                                  |
| S-14 | 7/11/2014 | 46.8                                | 45.7                                | 46.1                                | 1.3                  | 50.8                                  |
| S-15 | 7/11/2014 | 44.3                                | 43.4                                | 43.3                                | 1                    | 48.0                                  |
| S-16 | 6/3/2014  | 45.8                                | 43.4                                | 44.9                                | 2.4                  | 49.2                                  |
| S-17 | 6/3/2014  | 42.8                                | 41.8                                | 41.4                                | 1.4                  | 46.2                                  |
| S-18 | 6/5/2014  | 45.7                                | 46.2                                | 48.6                                | 2.9                  | 51.5                                  |
| S-19 | 6/5/2014  | 49.2                                | 46.3                                | 45.2                                | 4                    | 51.6                                  |
| S-20 | 6/10/2014 | 46.3                                | 47.5                                | 47.8                                | 1.5                  | 51.9                                  |
| S-21 | 6/10/2014 | 45.3                                | 47.1                                | 45.7                                | 1.8                  | 50.6                                  |
| S-22 | 6/12/2014 | 43.4                                | 41.6                                | 42.1                                | 1.8                  | 46.6                                  |
| S-23 | 6/12/2014 | 41.2                                | 42                                  | 41.3                                | 0.8                  | 45.7                                  |
| S-24 | 7/9/2014  | 50.9                                | 49                                  | 51.6                                | 2.6                  | 55.6                                  |
| S-25 | 7/9/2014  | 50.9                                | 51.6                                | 51.6                                | 0.7                  | 56.5                                  |

#### TABLE M.2: 50/35/15 91-Day SR

# Appendix N

# 28-Day Accelerated Rapid Chloride Permeability Data

| ID # | Cast Date | Slice 1<br>Result<br>(Coulombs) | Slice 2<br>Result<br>(Coulombs) | Slice 3<br>Result<br>(Coulombs) | Range<br>(Coulombs) | Rapid Chloride<br>Permeability<br>(Coulombs) |
|------|-----------|---------------------------------|---------------------------------|---------------------------------|---------------------|----------------------------------------------|
| D-6  | 2/6/2014  | 1172                            | 1102                            | 1347                            | 245                 | 1210                                         |
| D-7  | 2/6/2014  | 1158                            | 1241                            | 1141                            | 100                 | 1180                                         |
| D-8  | 2/18/2014 | 1342                            | 1431                            | 1394                            | 89                  | 1390                                         |
| D-9  | 2/18/2014 | 1508                            | 1469                            | 1356                            | 152                 | 1440                                         |
| D-10 | 2/20/2014 | 1339                            | 1356                            | 1270                            | 86                  | 1320                                         |
| D-11 | 2/20/2014 | 1416                            | 1352                            | 1304                            | 112                 | 1360                                         |
| D-12 | 2/25/2014 | 1411                            | 1418                            | 1442                            | 31                  | 1420                                         |
| D-13 | 2/25/2014 | 1463                            | 1342                            | 1421                            | 121                 | 1410                                         |
| D-14 | 3/4/2014  | 1290                            | 1231                            | 1254                            | 59                  | 1260                                         |
| D-15 | 3/4/2014  | 1294                            | 1231                            | 1495                            | 264                 | 1340                                         |
| D-16 | 3/6/2014  | 1092                            | 1034                            | 1077                            | 58                  | 1070                                         |
| D-17 | 3/6/2014  | 1104                            | 1119                            | 1096                            | 23                  | 1110                                         |
| D-18 | 3/19/2014 | 1489                            | 1308                            | 1444                            | 181                 | 1410                                         |
| D-19 | 3/19/2014 | 1394                            | 1554                            | 1476                            | 160                 | 1480                                         |
| D-20 | 4/2/2014  | 1199                            | 1244                            | 1179                            | 65                  | 1210                                         |
| D-21 | 4/2/2014  | 1069                            | 1244                            | 1089                            | 165                 | 1130                                         |
| D-22 | 8/26/2014 | 1731                            | 1467                            | 1646                            | 264                 | 1620                                         |
| D-23 | 8/26/2014 | 1432                            | 1386                            | 1635                            | 255                 | 1480                                         |
| D-24 | 4/17/2014 | 1600                            | 1229                            | 1282                            | 371                 | 1370                                         |
| D-25 | 4/17/2014 | 1316                            | 1520                            | Malfunction                     | 204                 | 1420                                         |

#### TABLE N.1: TDOT Class D 28-Day Accelerated RCP

| ID # | Cast Date | Slice 1<br>Result<br>(Coulombs) | Slice 2<br>Result<br>(Coulombs) | Slice 3<br>Result<br>(Coulombs) | Range<br>(Coulombs) | Rapid Chloride<br>Permeability<br>(Coulombs) |
|------|-----------|---------------------------------|---------------------------------|---------------------------------|---------------------|----------------------------------------------|
| S-6  | 5/16/2014 | 573                             | 590                             | 549                             | 41                  | 570                                          |
| S-7  | 5/16/2014 | 606                             | 599                             | 508                             | 98                  | 570                                          |
| S-8  | 5/20/2014 | 571                             | 596                             | 587                             | 25                  | 590                                          |
| S-9  | 5/20/2014 | 616                             | 598                             | 597                             | 19                  | 600                                          |
| S-10 | 5/23/2014 | 628                             | 657                             | 587                             | 70                  | 620                                          |
| S-11 | 5/23/2014 | 620                             | 600                             | 597                             | 23                  | 610                                          |
| S-12 | 7/23/2014 | 627                             | 632                             | 608                             | 24                  | 620                                          |
| S-13 | 7/23/2014 | 682                             | 641                             | 661                             | 41                  | 660                                          |
| S-14 | 7/11/2014 | 600                             | 604                             | 647                             | 47                  | 620                                          |
| S-15 | 7/11/2014 | 640                             | 647                             | 642                             | 7                   | 640                                          |
| S-16 | 6/3/2014  | 631                             | 591                             | 588                             | 43                  | 600                                          |
| S-17 | 6/3/2014  | 678                             | 615                             | 579                             | 99                  | 620                                          |
| S-18 | 6/5/2014  | 625                             | 599                             | 642                             | 43                  | 620                                          |
| S-19 | 6/5/2014  | 654                             | 608                             | 625                             | 46                  | 630                                          |
| S-20 | 6/10/2014 | 635                             | 639                             | 666                             | 31                  | 650                                          |
| S-21 | 6/10/2014 | 625                             | 743                             | 724                             | 118                 | 700                                          |
| S-22 | 6/12/2014 | 642                             | 647                             | 626                             | 21                  | 640                                          |
| S-23 | 6/12/2014 | 656                             | 645                             | 624                             | 32                  | 640                                          |
| S-24 | 7/9/2014  | 637                             | 738                             | 663                             | 101                 | 680                                          |
| S-25 | 7/9/2014  | 624                             | 669                             | 687                             | 63                  | 660                                          |

TABLE N.2: 50/35/15 28-Day Accelerated RCP

# Appendix O

### 56-Day Rapid Chloride Permeability Data

| ID # | Cast Date | Slice 1<br>Result<br>(Coulombs) | Slice 2<br>Result<br>(Coulombs) | Slice 3<br>Result<br>(Coulombs) | Range<br>(Coulombs) | Rapid Chloride<br>Permeability<br>(Coulombs) |
|------|-----------|---------------------------------|---------------------------------|---------------------------------|---------------------|----------------------------------------------|
| D-6  | 2/6/2014  | 2966                            | 3019                            | 3318                            | 352                 | 3100                                         |
| D-7  | 2/6/2014  | 3121                            | 3160                            | 3149                            | 39                  | 3140                                         |
| D-8  | 2/18/2014 | 2836                            | 2677                            | 3302                            | 625                 | 2940                                         |
| D-9  | 2/18/2014 | 2943                            | 3230                            | 2863                            | 367                 | 3010                                         |
| D-10 | 2/20/2014 | 2856                            | 2652                            | 2599                            | 257                 | 2700                                         |
| D-11 | 2/20/2014 | 2608                            | 2868                            | 2798                            | 260                 | 2760                                         |
| D-12 | 2/25/2014 | 2560                            | 2361                            | 2928                            | 567                 | 2620                                         |
| D-13 | 2/25/2014 | 2650                            | 2487                            | 2770                            | 283                 | 2640                                         |
| D-14 | 3/4/2014  | 2808                            | 2717                            | 2814                            | 97                  | 2780                                         |
| D-15 | 3/4/2014  | 2699                            | 2636                            | 2677                            | 63                  | 2670                                         |
| D-16 | 3/6/2014  | 2970                            | 2776                            | 2613                            | 357                 | 2790                                         |
| D-17 | 3/6/2014  | 2903                            | 2977                            | 2722                            | 255                 | 2870                                         |
| D-18 | 3/19/2014 | 2727                            | 2551                            | 2673                            | 176                 | 2650                                         |
| D-19 | 3/19/2014 | 2629                            | 2799                            | 2636                            | 170                 | 2690                                         |
| D-20 | 4/2/2014  | 2658                            | 2732                            | 2940                            | 282                 | 2780                                         |
| D-21 | 4/2/2014  | 2720                            | 2767                            | 2781                            | 61                  | 2760                                         |
| D-22 | 8/26/2014 | 3050                            | 3076                            | 3391                            | 341                 | 3170                                         |
| D-23 | 8/26/2014 | 2687                            | 2401                            | 3067                            | 666                 | 2720                                         |
| D-24 | 4/17/2014 | 2723                            | 2566                            | 3121                            | 555                 | 2800                                         |
| D-25 | 4/17/2014 | 2713                            | 2699                            | 2683                            | 30                  | 2700                                         |

#### TABLE O.1: TDOT Class D 56-Day RCP

| ID # | Cast Date | Slice 1<br>Result<br>(Coulombs) | Slice 2<br>Result<br>(Coulombs) | Slice 3<br>Result<br>(Coulombs) | Range<br>(Coulombs) | Rapid Chloride<br>Permeability<br>(Coulombs) |
|------|-----------|---------------------------------|---------------------------------|---------------------------------|---------------------|----------------------------------------------|
| S-6  | 5/16/2014 | 871                             | 812                             | 865                             | 59                  | 850                                          |
| S-7  | 5/16/2014 | 844                             | 787                             | 792                             | 57                  | 810                                          |
| S-8  | 5/20/2014 | 867                             | 828                             | 901                             | 73                  | 870                                          |
| S-9  | 5/20/2014 | 869                             | 923                             | 937                             | 68                  | 910                                          |
| S-10 | 5/23/2014 | 864                             | 835                             | 833                             | 31                  | 840                                          |
| S-11 | 5/23/2014 | 889                             | 822                             | 847                             | 67                  | 850                                          |
| S-12 | 7/23/2014 | 902                             | 876                             | 895                             | 26                  | 890                                          |
| S-13 | 7/23/2014 | 780                             | 753                             | 942                             | 189                 | 830                                          |
| S-14 | 7/11/2014 | 860                             | 821                             | 899                             | 78                  | 860                                          |
| S-15 | 7/11/2014 | 929                             | 747                             | 864                             | 182                 | 850                                          |
| S-16 | 6/3/2014  | 850                             | 839                             | 810                             | 40                  | 830                                          |
| S-17 | 6/3/2014  | 907                             | 910                             | 876                             | 34                  | 900                                          |
| S-18 | 6/5/2014  | 983                             | 947                             | 850                             | 133                 | 930                                          |
| S-19 | 6/5/2014  | 892                             | 907                             | 977                             | 85                  | 930                                          |
| S-20 | 6/10/2014 | 934                             | 932                             | 896                             | 38                  | 920                                          |
| S-21 | 6/10/2014 | 976                             | 930                             | 1019                            | 89                  | 980                                          |
| S-22 | 6/12/2014 | 944                             | 865                             | 875                             | 79                  | 900                                          |
| S-23 | 6/12/2014 | 870                             | 993                             | 981                             | 123                 | 950                                          |
| S-24 | 7/9/2014  | 811                             | 959                             | 890                             | 139                 | 890                                          |
| S-25 | 7/9/2014  | 936                             | 875                             | 901                             | 61                  | 900                                          |

#### TABLE 0.2: 50/35/15 56-Day RCP

# Appendix P

## 91-Day Rapid Chloride Permeability Data

| ID # | Cast Date | Slice 1<br>Result<br>(Coulombs) | Slice 2<br>Result<br>(Coulombs) | Slice 3<br>Result<br>(Coulombs) | Range<br>(Coulombs) | Rapid Chloride<br>Permeability<br>(Coulombs) |
|------|-----------|---------------------------------|---------------------------------|---------------------------------|---------------------|----------------------------------------------|
| D-6  | 2/6/2014  | 1791                            | 1670                            | 2024                            | 354                 | 1830                                         |
| D-7  | 2/6/2014  | 1765                            | 1865                            | 1786                            | 100                 | 1810                                         |
| D-8  | 2/18/2014 | 1591                            | 1623                            | 1647                            | 56                  | 1620                                         |
| D-9  | 2/18/2014 | 1641                            | 1727                            | 1704                            | 86                  | 1690                                         |
| D-10 | 2/20/2014 | 1804                            | 1601                            | 1628                            | 203                 | 1680                                         |
| D-11 | 2/20/2014 | 1617                            | 1782                            | 1651                            | 165                 | 1680                                         |
| D-12 | 2/25/2014 | 1662                            | 1652                            | 1578                            | 84                  | 1630                                         |
| D-13 | 2/25/2014 | 1711                            | 1722                            | 1800                            | 89                  | 1740                                         |
| D-14 | 3/4/2014  | 1623                            | 1480                            | 1597                            | 143                 | 1570                                         |
| D-15 | 3/4/2014  | 1377                            | 1629                            | Malfunction                     | 252                 | 1500                                         |
| D-16 | 3/6/2014  | 1616                            | 1441                            | 1613                            | 175                 | 1560                                         |
| D-17 | 3/6/2014  | 2002                            | 1767                            | 1885                            | 235                 | 1890                                         |
| D-18 | 3/19/2014 | 1896                            | 1783                            | 1734                            | 162                 | 1800                                         |
| D-19 | 3/19/2014 | 1876                            | 1911                            | 1738                            | 173                 | 1840                                         |
| D-20 | 4/2/2014  | 1787                            | 1666                            | 1732                            | 121                 | 1730                                         |
| D-21 | 4/2/2014  | 1588                            | 1689                            | 1707                            | 119                 | 1660                                         |
| D-22 | 8/26/2014 | 2366                            | 2440                            | 2434                            | 68                  | 2410                                         |
| D-23 | 8/26/2014 | 2204                            | 2016                            | 2312                            | 296                 | 2180                                         |
| D-24 | 4/17/2014 | 1565                            | 1669                            | 1655                            | 104                 | 1630                                         |
| D-25 | 4/17/2014 | 1806                            | 1935                            | 1677                            | 258                 | 1810                                         |

### TABLE P.1: TDOT Class D 91-Day RCP

| ID # | Cast Date | Slice 1<br>Result<br>(Coulombs) | Slice 2<br>Result<br>(Coulombs) | Slice 3<br>Result<br>(Coulombs) | Range<br>(Coulombs) | Rapid Chloride<br>Permeability<br>(Coulombs) |
|------|-----------|---------------------------------|---------------------------------|---------------------------------|---------------------|----------------------------------------------|
| S-6  | 5/16/2014 | 701                             | 741                             | 685                             | 56                  | 710                                          |
| S-7  | 5/16/2014 | 654                             | 689                             | 712                             | 58                  | 690                                          |
| S-8  | 5/20/2014 | 653                             | 611                             | 714                             | 103                 | 660                                          |
| S-9  | 5/20/2014 | 678                             | 651                             | 692                             | 41                  | 670                                          |
| S-10 | 5/23/2014 | 739                             | 704                             | 657                             | 82                  | 700                                          |
| S-11 | 5/23/2014 | 718                             | 682                             | 762                             | 80                  | 720                                          |
| S-12 | 7/23/2014 | 668                             | 593                             | 588                             | 80                  | 620                                          |
| S-13 | 7/23/2014 | 562                             | 414                             | 634                             | 220                 | 540                                          |
| S-14 | 7/11/2014 | 572                             | 529                             | 561                             | 43                  | 550                                          |
| S-15 | 7/11/2014 | 480                             | 344                             | 575                             | 231                 | 470                                          |
| S-16 | 6/3/2014  | 689                             | 680                             | 655                             | 35                  | 680                                          |
| S-17 | 6/3/2014  | 729                             | 541                             | 676                             | 188                 | 650                                          |
| S-18 | 6/5/2014  | 716                             | 762                             | 678                             | 84                  | 720                                          |
| S-19 | 6/5/2014  | 699                             | 538                             | 722                             | 184                 | 650                                          |
| S-20 | 6/10/2014 | 665                             | 722                             | 668                             | 57                  | 690                                          |
| S-21 | 6/10/2014 | 578                             | 600                             | 719                             | 141                 | 630                                          |
| S-22 | 6/12/2014 | 736                             | 684                             | 791                             | 107                 | 740                                          |
| S-23 | 6/12/2014 | 674                             | 573                             | 693                             | 120                 | 650                                          |
| S-24 | 7/9/2014  | 714                             | 638                             | 764                             | 126                 | 710                                          |
| S-25 | 7/9/2014  | 591                             | 597                             | 808                             | 217                 | 670                                          |

#### TABLE P.2: 50/35/15 91-Day RCP

# Appendix Q

## Redo SR-RCP Rapid Chloride Permeability Data

| r     |          |                                 |                                 |                                 | 1                   |                                              |
|-------|----------|---------------------------------|---------------------------------|---------------------------------|---------------------|----------------------------------------------|
| ID #  | Age      | Slice 1<br>Result<br>(Coulombs) | Slice 2<br>Result<br>(Coulombs) | Slice 3<br>Result<br>(Coulombs) | Range<br>(Coulombs) | Rapid Chloride<br>Permeability<br>(Coulombs) |
| D-22A | 28-Day A | 1446                            | 1335                            | 1424                            | 111                 | 1400                                         |
| D-23A | 28-Day A | 1367                            | 1731                            | 1342                            | 389                 | 1480                                         |
| D-22B | 28-Day A | 1746                            | 1686                            | 1694                            | 100                 | 1710                                         |
| D-23B | 28-Day A | 16.3                            | 1592                            | 1759                            | 167                 | 1650                                         |
| D-22A | 91-Day   | 1719                            | 1698                            | 1863                            | 165                 | 1760                                         |
| D-23A | 91-Day   | 1794                            | 1805                            | 1741                            | 64                  | 1780                                         |
| S-12A | 56-Day   | 864                             | 835                             | 833                             | 31                  | 840                                          |
| S-13A | 56-Day   | 889                             | 822                             | 847                             | 67                  | 850                                          |
| S-14A | 56-Day   | 870                             | 884                             | 815                             | 69                  | 860                                          |
| S-15A | 56-Day   | 797                             | 859                             | 856                             | 62                  | 840                                          |
| S-12A | 91-Day   | 751                             | 699                             | 733                             | 52                  | 730                                          |
| S-13A | 91-Day   | 799                             | 714                             | 708                             | 91                  | 740                                          |
| S-14A | 91-Day   | 672                             | 700                             | 716                             | 44                  | 700                                          |
| S-15A | 91-Day   | 739                             | 618                             | 759                             | 141                 | 710                                          |

#### TABLE Q.1: Redo RCP

# Appendix R

### **Redo SR-RCP Surface Resistivity Data**

### (immersion curing factor of 1.1 applied to final result)

| ID #  | Age      | Cylinder 1<br>Result<br>(kilohm-cm) | Cylinder 2<br>Result<br>(kilohm-cm) | Cylinder 3<br>Result<br>(kilohm-cm) | Range<br>(kilohm-cm) | Surface<br>Resistivity<br>(kilohm-cm) |
|-------|----------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------|---------------------------------------|
| D-22A | 28-Day A | 22.2                                | 20.9                                | 21.3                                | 1.3                  | 23.6                                  |
| D-23A | 28-Day A | 19.9                                | 20.1                                | 21.0                                | 1.1                  | 22.4                                  |
| D-22B | 28-Day A | 18.1                                | 19.3                                | 19.1                                | 1.2                  | 20.7                                  |
| D-23B | 28-Day A | 18.6                                | 18.0                                | 17.8                                | 0.8                  | 20.0                                  |
| D-22A | 91-Day   | 23.0                                | 23.2                                | 23.1                                | 0.2                  | 25.4                                  |
| D-23A | 91-Day   | 23.2                                | 22.8                                | 22.8                                | 0.4                  | 25.2                                  |
| S-12A | 56-Day   | 42.2                                | 42.2                                | 40.6                                | 1.6                  | 45.8                                  |
| S-13A | 56-Day   | 40.7                                | 41.2                                | 41.3                                | 0.6                  | 45.4                                  |
| S-14A | 56-Day   | 35.9                                | 34.6                                | 35.0                                | 1.3                  | 38.7                                  |
| S-15A | 56-Day   | 34.0                                | 35.0                                | 33.2                                | 1.8                  | 37.5                                  |
| S-12A | 91-Day   | 47.6                                | 47.8                                | 49.0                                | 1.4                  | 52.9                                  |
| S-13A | 91-Day   | 48.3                                | 48.2                                | 46.9                                | 1.4                  | 52.6                                  |
| S-14A | 91-Day   | 44.2                                | 41.6                                | 42.1                                | 2.6                  | 46.3                                  |
| S-15A | 91-Day   | 40.0                                | 40.5                                | 41.6                                | 1.6                  | 44.8                                  |

#### TABLE R.1: Redo SR

## Appendix S

### Unpublished TTU Class D 25% C Study Rapid Chloride Permeability Data

|      |               |                              | L                            |                              |                     |                                              |
|------|---------------|------------------------------|------------------------------|------------------------------|---------------------|----------------------------------------------|
| ID # | Age<br>(days) | Slice 1 Result<br>(Coulombs) | Slice 2 Result<br>(Coulombs) | Slice 3 Result<br>(Coulombs) | Range<br>(Coulombs) | Rapid Chloride<br>Permeability<br>(Coulombs) |
| C-1  | 56            | 2753                         | 2653                         | 2435                         | 318                 | 2610                                         |
| C-2  | 56            | 3236                         | 3022                         | 2984                         | 252                 | 3080                                         |
| C-3  | 56            | 2749                         | 2459                         | 2239                         | 510                 | 2480                                         |
| C-4  | 56            | 2852                         | 2528                         | 2545                         | 324                 | 2640                                         |
| C-5  | 56            | 2141                         | 2386                         | 2891                         | 750                 | 2470                                         |
| C-6  | 56            | 2820                         | 2305                         | 2749                         | 515                 | 2630                                         |
| C-7  | 56            |                              |                              | Power Outage                 | •                   |                                              |
| C-8  | 56            |                              |                              | Power Outage                 |                     |                                              |
| C-9  | 56            | 3072                         | 2894                         | 3001                         | 178                 | 2990                                         |
| C-10 | 56            | 2821                         | 2569                         | 2982                         | 413                 | 2790                                         |
| C-1  | 91            | 1438                         | 1915                         | 1757                         | 477                 | 1700                                         |
| C-2  | 91            | 2068                         | 1825                         | 1929                         | 243                 | 1940                                         |
| C-3  | 91            | 1756                         | 1741                         | 1880                         | 139                 | 1790                                         |
| C-4  | 91            | 1808                         | 1652                         | 1686                         | 156                 | 1720                                         |
| C-5  | 91            | 1917                         | 1997                         | 2054                         | 137                 | 1990                                         |
| C-6  | 91            | 1364                         | 1953                         | 2544                         | 1180                | 1950                                         |
| C-7  | 91            | 1690                         | 1933                         | 1703                         | 243                 | 1780                                         |
| C-8  | 91            | 2084                         | 2111                         | 1823                         | 288                 | 2010                                         |
| C-9  | 91            | 2173                         | 2055                         | 2227                         | 172                 | 2150                                         |
| C-10 | 91            | 2153                         | 2130                         | 2197                         | 67                  | 2160                                         |

TABLE S.1: Unpublished TTU Class D 25% C Study RCP

## Appendix T

### Unpublished TTU Class D 25% C Study Surface Resistivity Data

| ID # | Age<br>(days) | Cylinder 1<br>Result<br>(kilohm-cm) | Cylinder 2<br>Result<br>(kilohm-cm) | Cylinder 3<br>Result<br>(kilohm-cm) | Range<br>(kilohm-cm) | Surface<br>Resistivity<br>(kilohm-cm) |  |  |
|------|---------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------|---------------------------------------|--|--|
| C-1  | 56            | 20.6                                | 18.4                                | 19.1                                | 2.2                  | 21.3                                  |  |  |
| C-2  | 56            | 18.6                                | 17.8                                | 19.1                                | 1.3                  | 20.3                                  |  |  |
| C-3  | 56            | 19.2                                | 18.4                                | 19.3                                | 0.9                  | 20.9                                  |  |  |
| C-4  | 56            | 18.5                                | 19.0                                | 18.9                                | 0.5                  | 20.7                                  |  |  |
| C-5  | 56            | 19.0                                | 18.7                                | 19.2                                | 0.5                  | 20.8                                  |  |  |
| C-6  | 56            | 17.1                                | 16.7                                | 17.1                                | 0.4                  | 18.7                                  |  |  |
| C-7  | 56            |                                     | No RCP for                          | Pair Due to Pow                     | ver Outage           |                                       |  |  |
| C-8  | 56            |                                     | No RCP for Pair Due to Power Outage |                                     |                      |                                       |  |  |
| C-9  | 56            | 19.7                                | 21.0                                | 19.8                                | 1.3                  | 22.2                                  |  |  |
| C-10 | 56            | 20.3                                | 20.3                                | 18.6                                | 1.7                  | 21.7                                  |  |  |
| C-1  | 91            | 27.6                                | 25.8                                | 24.5                                | 3.1                  | 28.6                                  |  |  |
| C-2  | 91            | 23.7                                | 22.5                                | 23.0                                | 1.2                  | 25.3                                  |  |  |
| C-3  | 91            | 25.4                                | 23.9                                | 25.2                                | 1.5                  | 27.3                                  |  |  |
| C-4  | 91            | 25.4                                | 25.0                                | 24.7                                | 0.7                  | 27.5                                  |  |  |
| C-5  | 91            | 25.9                                | 26.9                                | 25.7                                | 0.9                  | 28.8                                  |  |  |
| C-6  | 91            | 23.3                                | 22.5                                | 23.7                                | 1.2                  | 25.5                                  |  |  |
| C-7  | 91            | 20.1                                | 19.4                                | 19.4                                | 0.7                  | 21.6                                  |  |  |
| C-8  | 91            | 20.3                                | 20.5                                | 20.5                                | 0.2                  | 22.5                                  |  |  |
| C-9  | 91            | 22.1                                | 23.4                                | 22.7                                | 1.3                  | 25.0                                  |  |  |
| C-10 | 91            | 23.7                                | 23.8                                | 21.3                                | 2.5                  | 25.2                                  |  |  |

TABLE T.1: Unpublished TTU Class D 25% C Study SR

# Appendix U

### Unpublished TTU Slag-Fly Ash Study Rapid Chloride Permeability Data

| Mixture /<br>Batch # | Age<br>(days) | Slice 1<br>Result<br>(Coulombs) | Slice 2<br>Result<br>(Coulombs) | Slice 3<br>Result<br>(Coulombs) | Range<br>(Coulombs) | Rapid Chloride<br>Permeability<br>(Coulombs) |
|----------------------|---------------|---------------------------------|---------------------------------|---------------------------------|---------------------|----------------------------------------------|
| 25F – 1              | 56            | 687                             | 636                             | 627                             | 60                  | 650                                          |
| 25F - 2              | 56            | 614                             | 599                             | 633                             | 34                  | 620                                          |
| 20F - 1              | 56            | 631                             | 618                             | 643                             | 25                  | 630                                          |
| 20F - 2              | 56            | 658                             | 635                             | 664                             | 29                  | 650                                          |
| 15F – 1              | 56            | 697                             | 765                             | 766                             | 69                  | 740                                          |
| 15F – 2              | 56            | 638                             | 727                             | 678                             | 89                  | 680                                          |
| 25C – 1              | 56            | 1056                            | 1033                            | 1048                            | 23                  | 1050                                         |
| 25C – 2              | 56            | 995                             | 1055                            | 1069                            | 74                  | 1040                                         |
| 20C – 1              | 56            | 1229                            | 997                             | 953                             | 276                 | 1060                                         |
| 20C - 2              | 56            | 1025                            | 1002                            | 964                             | 61                  | 1000                                         |
| 15C – 1              | 56            | 901                             | 941                             | 1010                            | 109                 | 950                                          |
| 15C – 2              | 56            | 915                             | 968                             | 898                             | 70                  | 930                                          |
| 25F – 1              | 91            | 490                             | 445                             | 462                             | 45                  | 470                                          |
| 25F - 2              | 91            | 423                             | 453                             | 446                             | 23                  | 440                                          |
| 20F - 1              | 91            | 482                             | 465                             | 481                             | 17                  | 480                                          |
| 20F - 2              | 91            | 522                             | 486                             | 523                             | 37                  | 510                                          |
| 15F – 1              | 91            | 564                             | 562                             | 569                             | 7                   | 570                                          |
| 15F - 2              | 91            | 622                             | 589                             | 576                             | 46                  | 600                                          |
| 25C – 1              | 91            | 844                             | 788                             | 773                             | 71                  | 800                                          |
| 25C - 2              | 91            | 875                             | 799                             | Malfunction                     | 76                  | 840                                          |
| 20C – 1              | 91            | 818                             | 1215                            | 808                             | 407                 | 950                                          |
| 20C – 2              | 91            | 939                             | 835                             | Malfunction                     | 104                 | 890                                          |
| 15C – 1              | 91            | 902                             | 814                             | 828                             | 88                  | 850                                          |
| 15C – 2              | 91            | 804                             | 822                             | 820                             | 18                  | 820                                          |

TABLE U.1: Unpublished TTU Slag-Fly Ash Study RCP

## Appendix V

### Unpublished TTU Slag-Fly Ash Study Surface Resistivity Data

| Mixture /<br>Batch # | Age<br>(days) | Cylinder 1<br>Result<br>(kilohm-cm) | Cylinder 2<br>Result<br>(kilohm-cm) | Cylinder 3<br>Result<br>(kilohm-cm) | Range<br>(kilohm-cm) | Surface<br>Resistivity<br>(kilohm-cm) |
|----------------------|---------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------|---------------------------------------|
| 25F – 1              | 56            | 52.5                                | 50.2                                | 58.3                                | 8.1                  | 59.0                                  |
| 25F - 2              | 56            | 49.6                                | 52.0                                | 53.5                                | 3.9                  | 56.9                                  |
| 20F - 1              | 56            | 47.1                                | 47.4                                | 47.3                                | 0.3                  | 52.0                                  |
| 20F - 2              | 56            | 48.1                                | 48.5                                | 47.6                                | 0.9                  | 52.8                                  |
| 15F – 1              | 56            | 51.5                                | 50.0                                | 50.5                                | 1.5                  | 52.6                                  |
| 15F – 2              | 56            | 51.5                                | 50.0                                | 50.7                                | 1.5                  | 55.7                                  |
| 25C - 1              | 56            | 39.7                                | 41.4                                | 40.1                                | 1.7                  | 44.4                                  |
| 25C - 2              | 56            | 39.2                                | 40.6                                | 38.8                                | 1.8                  | 43.5                                  |
| 20C – 1              | 56            | 35.6                                | 36.9                                | 36.9                                | 1.3                  | 40.1                                  |
| 20C - 2              | 56            | 35.6                                | 35.3                                | 37.3                                | 2.0                  | 39.7                                  |
| 15C – 1              | 56            | 45.9                                | 47.1                                | 43.4                                | 3.7                  | 50.0                                  |
| 15C – 2              | 56            | 42.8                                | 43.5                                | 41.6                                | 1.9                  | 46.9                                  |
| 25F – 1              | 91            | 61.5                                | 60.7                                | 62.5                                | 1.8                  | 67.7                                  |
| 25F - 2              | 91            | 56.2                                | 59.1                                | 63.5                                | 7.3                  | 65.6                                  |
| 20F - 1              | 91            | 55.2                                | 56.6                                | 54.6                                | 2.0                  | 61.0                                  |
| 20F - 2              | 91            | 55.6                                | 55.4                                | 55.2                                | 0.4                  | 60.9                                  |
| 15F – 1              | 91            | 63.8                                | 60.8                                | 60.4                                | 3.4                  | 67.8                                  |
| 15F - 2              | 91            | 58.2                                | 63.4                                | 62.8                                | 5.2                  | 67.6                                  |
| 25C - 1              | 91            | 49.4                                | 50.5                                | 49.7                                | 1.1                  | 54.9                                  |
| 25C - 2              | 91            | 49.6                                | 49.1                                | 47.6                                | 2.0                  | 53.7                                  |
| 20C – 1              | 91            | 38.5                                | 39.5                                | 39.9                                | 1.4                  | 43.3                                  |
| 20C - 2              | 91            | 38.7                                | 39.5                                | 40.0                                | 1.3                  | 43.3                                  |
| 15C – 1              | 91            | 48.4                                | 51.3                                | 48.9                                | 2.9                  | 54.5                                  |
| 15C – 2              | 91            | 53.9                                | 54.3                                | 52.9                                | 1.4                  | 59.0                                  |

TABLE V.1: Unpublished TTU Slag-Fly Ash Study SR

# Appendix W

### Unpublished TTU Aggregate Study 56-Day Rapid Chloride Permeability Data

| Mixture / Batch #       | Slice 1<br>Result<br>(Coulombs) | Slice 2<br>Result<br>(Coulombs) | Slice 3<br>Result<br>(Coulombs) | Range<br>(Coulombs) | Rapid Chloride<br>Permeability<br>(Coulombs) |
|-------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------|----------------------------------------------|
| 80/20 Sand Variable - 1 | 1809                            | 1938                            | 1770                            | 168                 | 1840                                         |
| 80/20 Sand Variable - 2 | 1767                            | 2422                            | 1906                            | 655                 | 2030                                         |
| 80/20 LSCA1 – 1         | 2266                            | 2590                            | 2554                            | 324                 | 2470                                         |
| 80/20 LSCA1 - 2         | 2815                            | 2167                            | 2642                            | 648                 | 2540                                         |
| 80/20 GRCA1 – 1         | 5126                            | 4654                            | 4828                            | 472                 | 4870                                         |
| 80/20 GRCA1 - 2         | 4787                            | 5528                            | 4719                            | 809                 | 5010                                         |
| 80/20 GRCA2 – 1         | 4490                            | 4270                            | 4542                            | 272                 | 4430                                         |
| 80/20 GRCA2 - 2         | 4205                            | 3364                            | 4069                            | 841                 | 3880                                         |
| 80/20 LSCA2 - 1         | 1928                            | 2641                            | 2333                            | 713                 | 2300                                         |
| 80/20 LSCA2 - 2         | 2751                            | 2869                            | 2815                            | 118                 | 2810                                         |
| 80/20 LSCA3 – 1         | 2085                            | 2427                            | 2132                            | 342                 | 2220                                         |
| 80/20 LSCA3 - 2         | 2498                            | 2460                            | 2458                            | 40                  | 2470                                         |
| 80/20 LSCA4 – 1         | 2377                            | 2589                            | 2388                            | 212                 | 2450                                         |
| 80/20 LSCA4 - 2         | 2616                            | 2675                            | 2560                            | 115                 | 2620                                         |
| 80/20 LSCA5 – 1         | 2227                            | 2547                            | 2230                            | 320                 | 2340                                         |
| 80/20 LSCA5 - 2         | 2628                            | 2570                            | 2550                            | 78                  | 2580                                         |
| 100PC GRCA1 -1          | 3763                            | 5129                            | 3560                            | 1569                | 4150                                         |
| 100PC GRCA1 - 2         | 3656                            | 4946                            | 3800                            | 1290                | 4130                                         |
| 100PC GRCA1 - 3         | 4868                            | 4544                            | 3321                            | 1547                | 4240                                         |
| 100PC GRCA2 - 1         | 3567                            | 5706                            | 4688                            | 2139                | 4650                                         |
| 100PC GRCA2 - 2         | 5514                            | 5470                            | 3876                            | 1638                | 4950                                         |
| 100PC GRCA2 - 3         | Malfunction                     | 5260                            | 3768                            | 1492                | 4520                                         |
| 100PC GRCA2 - 4         | 5644                            | 5449                            | 4356                            | 1288                | 5150                                         |

 TABLE W.1: Unpublished TTU Aggregate Study 56-Day RCP

## Appendix X

### Unpublished TTU Aggregate Study 56-Day Surface Resistivity Data

|                         | - <b>-</b>                          |                                     |                                     | · ·                  |                                       |
|-------------------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------|---------------------------------------|
| Mixture / Batch #       | Cylinder 1<br>Result<br>(kilohm-cm) | Cylinder 2<br>Result<br>(kilohm-cm) | Cylinder 3<br>Result<br>(kilohm-cm) | Range<br>(kilohm-cm) | Surface<br>Resistivity<br>(kilohm-cm) |
| 80/20 Sand Variable - 1 | 24.1                                | 24.9                                | 25.5                                | 1.4                  | 27.3                                  |
| 80/20 Sand Variable - 2 | 24.0                                | 23.3                                | 23.4                                | 0.7                  | 25.9                                  |
| 80/20 LSCA1 – 1         | 18.4                                | 17.5                                | 16.2                                | 2.2                  | 19.1                                  |
| 80/20 LSCA1 - 2         | 18.0                                | 19.1                                | 19.8                                | 1.8                  | 20.8                                  |
| 80/20 GRCA1 – 1         | 11.2                                | 11.3                                | 11.7                                | 0.5                  | 12.5                                  |
| 80/20 GRCA1 - 2         | 9.9                                 | 10.1                                | 10.1                                | 0.2                  | 11.0                                  |
| 80/20 GRCA2 – 1         | 11.6                                | 11.5                                | 12.1                                | 0.6                  | 12.9                                  |
| 80/20 GRCA2 - 2         | 10.6                                | 10.6                                | 11.2                                | 0.6                  | 11.9                                  |
| 80/20 LSCA2 - 1         | 17.3                                | 17.0                                | 16.8                                | 0.5                  | 18.7                                  |
| 80/20 LSCA2 - 2         | 16.5                                | 17.6                                | 16.5                                | 1.1                  | 18.5                                  |
| 80/20 LSCA3 – 1         | N/A                                 | N/A                                 | N/A                                 | N/A                  | 23.2                                  |
| 80/20 LSCA3 - 2         | N/A                                 | N/A                                 | N/A                                 | N/A                  | 22.0                                  |
| 80/20 LSCA4 - 1         | 18.9                                | 18.9                                | 18.6                                | 0.3                  | 20.7                                  |
| 80/20 LSCA4 - 2         | 18.8                                | 18.4                                | 18.1                                | 0.7                  | 20.3                                  |
| 80/20 LSCA5 – 1         | 17.2                                | 18.2                                | 18.7                                | 1.5                  | 19.8                                  |
| 80/20 LSCA5 - 2         | 18.9                                | 18.9                                | 18.9                                | 0                    | 20.8                                  |
| 100PC GRCA1 -1          | 11.3                                | 11.1                                | 12.2                                | 1.1                  | 12.7                                  |
| 100PC GRCA1 - 2         | 9.9                                 | 10.0                                | 10.1                                | 0.2                  | 11.1                                  |
| 100PC GRCA1 - 3         | 10.0                                | 9.8                                 | 10.4                                | 0.6                  | 11.1                                  |
| 100PC GRCA2 - 1         | 8.5                                 | 8.5                                 | 8.6                                 | 0.1                  | 9.4                                   |
| 100PC GRCA2 - 2         | 9.1                                 | 8.8                                 | 9.5                                 | 0.7                  | 10.0                                  |
| 100PC GRCA2 - 3         | 9.7                                 | 9.7                                 | 9.9                                 | 0.2                  | 10.8                                  |
| 100PC GRCA2 - 4         | 8.9                                 | 9.0                                 | 9.5                                 | 0.6                  | 10.0                                  |

TABLE X.1: Unpublished TTU Aggregate Study 56-Day SR

## Appendix Y

Unpublished TTU Aggregate Study 28-Day Accelerated Rapid Chloride Permeability Data

| Mixture / Batch # | Slice 1<br>Result<br>(Coulombs) | Slice 2<br>Result<br>(Coulombs) | Slice 3<br>Result<br>(Coulombs) | Range<br>(Coulombs) | Rapid Chloride<br>Permeability<br>(Coulombs) |
|-------------------|---------------------------------|---------------------------------|---------------------------------|---------------------|----------------------------------------------|
| 100PC GRCA1-1     | 3866                            | 4862                            | 3594                            | 1268                | 4110                                         |
| 100PC GRCA1 - 2   | 4717                            | 3984                            | 2900                            | 1817                | 3870                                         |
| 100PC GRCA1 - 3   | 4336                            | 3551                            | 4536                            | 985                 | 4140                                         |

TABLE Y.1: Unpublished TTU Aggregate Study 28-Day Accelerated RCP

## Appendix Z

## Unpublished TTU Aggregate Study 28-Day Accelerated Surface Resistivity Data

| Mixture / Batch # | Cylinder 1<br>Result<br>(kilohm-cm) | Cylinder 2<br>Result<br>(kilohm-cm) | Cylinder 3<br>Result<br>(kilohm-cm) | Range<br>(kilohm-cm) | Surface<br>Resistivity<br>(kilohm-cm) |
|-------------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------|---------------------------------------|
| 100PC GRCA1-1     | 8.2                                 | 8.1                                 | 9.0                                 | 0.9                  | 9.3                                   |
| 100PC GRCA1 - 2   | 8.6                                 | 9.0                                 | 9.3                                 | 0.7                  | 9.9                                   |
| 100PC GRCA1 - 3   | 8.8                                 | 8.6                                 | 8.9                                 | 0.3                  | 9.6                                   |

 TABLE Z.1: Unpublished TTU Aggregate Study 28-Day Accelerated SR

## Appendix AA

### Unpublished Effect of SCM on SR Study 28-Day Surface Resistivity Data

| Mixture / Batch # | Cylinder 1<br>Result<br>(kilohm-cm) | Cylinder 2<br>Result<br>(kilohm-cm) | Cylinder 3<br>Result<br>(kilohm-cm) | Range<br>(kilohm-cm) | Surface<br>Resistivity<br>(kilohm-cm) |
|-------------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------|---------------------------------------|
| 20F – 1           | 11.1                                | 11.2                                | 11.5                                | 0.4                  | 12.4                                  |
| 20F - 2           | 12.1                                | 11.7                                | 11.6                                | 0.5                  | 13.0                                  |
| 20F - 3           | 12.1                                | 11.5                                | 12.3                                | 0.8                  | 13.2                                  |
| 25F – 1           | 12.0                                | 13.2                                | 13.2                                | 1.2                  | 14.1                                  |
| 25F – 2           | 13.5                                | 12.8                                | 12.7                                | 0.8                  | 14.3                                  |
| 25F - 3           | 12.4                                | 13.1                                | 12.7                                | 0.7                  | 14.0                                  |
| 25C – 1           | 11.4                                | 11.1                                | 11.6                                | 0.5                  | 12.5                                  |
| 25C – 2           | 11.5                                | 11.5                                | 11.7                                | 0.2                  | 12.8                                  |
| 25C – 3           | 11.5                                | 11.3                                | 11.9                                | 0.6                  | 12.7                                  |
| 3.5SF20F - 1      | 25.0                                | 25.0                                | 24.9                                | 0.1                  | 27.5                                  |
| 3.5SF20F $- 2$    | 25.1                                | 26.1                                | 25.6                                | 1.0                  | 28.1                                  |
| 3.5SF20F – 3      | 25.8                                | 26.2                                | 25.4                                | 0.8                  | 28.4                                  |
| 5SF25C – 1        | 28.3                                | 28.0                                | 28.5                                | 0.5                  | 31.1                                  |
| 5SF25C – 2        | 27.5                                | 27.1                                | 28.0                                | 0.9                  | 30.3                                  |
| 5SF25C – 3        | 26.6                                | 26.8                                | 26.6                                | 0.2                  | 29.3                                  |
| 3.5MK20F - 1      | 28.1                                | 28.4                                | 27.8                                | 0.6                  | 30.9                                  |
| 3.5MK20F - 2      | 27.1                                | 27.1                                | 27.0                                | 0.1                  | 29.7                                  |
| 3.5MK20F – 3      | 26.1                                | 27.1                                | 26.7                                | 1.0                  | 29.3                                  |
| 5MK25C - 1        | 29.9                                | 30.5                                | 29.9                                | 0.6                  | 33.1                                  |
| 5MK25C - 2        | 30.2                                | 30.2                                | 29.9                                | 0.3                  | 33.1                                  |
| 5MK25C - 3        | 29.7                                | 29.6                                | 30.2                                | 0.6                  | 32.8                                  |

TABLE AA.1: Unpublished Effect of SCM on SR Study 28-Day SR

| Mixture / Batch # | Cylinder 1<br>Result<br>(kilohm-cm) | Cylinder 2<br>Result<br>(kilohm-cm) | Cylinder 3<br>Result<br>(kilohm-cm) | Range<br>(kilohm-cm) | Surface<br>Resistivity<br>(kilohm-cm) |
|-------------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------|---------------------------------------|
| 45SL – 1          | 27.1                                | 26.8                                | 27.7                                | 0.9                  | 29.9                                  |
| 45SL - 2          | 28.4                                | 27.4                                | 28.5                                | 1.1                  | 30.9                                  |
| 45SL - 3          | 29.0                                | 30.0                                | 30.2                                | 1.2                  | 32.7                                  |
| 35SL15F – 1       | 29.3                                | 28.4                                | 28.9                                | 0.9                  | 31.8                                  |
| 35SL15F – 2       | 28.7                                | 29.2                                | 28.9                                | 0.5                  | 31.8                                  |
| 35SL15F – 3       | 27.5                                | 27.6                                | 28.5                                | 1.0                  | 30.6                                  |
| 100PC – 1         | 11.0                                | 11.6                                | 11.0                                | 0.6                  | 12.3                                  |
| 100PC - 2         | 10.7                                | 10.4                                | 10.4                                | 0.3                  | 11.5                                  |
| 100PC - 3         | 11.0                                | 10.9                                | 10.9                                | 0.1                  | 12.0                                  |
| 45SL5MK – 1       | 90.8                                | 94.1                                | 91.7                                | 3.3                  | 101.4                                 |
| 45SL5MK – 2       | 91.4                                | 89.7                                | 93.1                                | 3.4                  | 100.5                                 |
| 45SL5MK – 3       | 89.5                                | 93.9                                | 92.4                                | 4.4                  | 101.1                                 |
| 35SL15MK – 1      | 128.7                               | 125.3                               | 127.0                               | 3.4                  | 139.7                                 |
| 35SL15MK – 2      | 126.0                               | 126.8                               | 123.2                               | 3.6                  | 137.9                                 |
| 35SL15MK – 3      | 126.9                               | 127.9                               | 126.4                               | 1.5                  | 139.7                                 |
| 50C – 1           | 11.8                                | 12.2                                | 11.8                                | 0.4                  | 13.1                                  |
| 50C – 2           | 12.1                                | 11.7                                | 11.6                                | 0.5                  | 13.0                                  |
| 50C - 3           | 11.6                                | 11.7                                | 11.1                                | 0.6                  | 12.6                                  |

TABLE AA.2: Unpublished Effect of SCM on SR Study 28-Day SR Continued

## Appendix AB

### Unpublished Effect of SCM on SR Study 56-day Surface Resistivity Data

| Mixture / Batch # | Cylinder 1<br>Result<br>(kilohm-cm) | Cylinder 2<br>Result<br>(kilohm-cm) | Cylinder 3<br>Result<br>(kilohm-cm) | Range<br>(kilohm-cm) | Surface<br>Resistivity<br>(kilohm-cm) |
|-------------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------|---------------------------------------|
| 20F – 1           | 16.0                                | 16.1                                | 16.3                                | 0.3                  | 17.7                                  |
| 20F - 2           | 16.9                                | 16.4                                | 16.0                                | 0.9                  | 18.1                                  |
| 20F – 3           | 16.5                                | 15.8                                | 16.6                                | 0.8                  | 17.9                                  |
| 25F – 1           | 19.5                                | 20.5                                | 20.3                                | 1.0                  | 22.1                                  |
| 25F - 2           | 20.9                                | 20.2                                | 20.2                                | 0.7                  | 22.5                                  |
| 25F - 3           | 19.8                                | 20.3                                | 20.1                                | 0.5                  | 22.1                                  |
| 25C – 1           | 16.2                                | 15.8                                | 16.5                                | 0.7                  | 17.8                                  |
| 25C – 2           | 16.1                                | 16.6                                | 17.0                                | 0.9                  | 18.2                                  |
| 25C – 3           | 16.1                                | 16.1                                | 16.9                                | 0.8                  | 18.0                                  |
| 3.5SF20F - 1      | 39.5                                | 39.0                                | 39.6                                | 0.6                  | 43.3                                  |
| 3.5SF20F $- 2$    | 39.8                                | 41.2                                | 41.2                                | 1.4                  | 44.8                                  |
| 3.5SF20F – 3      | 41.0                                | 41.2                                | 40.5                                | 0.7                  | 45.0                                  |
| 5SF25C – 1        | 50.1                                | 46.7                                | 48.2                                | 3.4                  | 53.2                                  |
| 5SF25C – 2        | 45.5                                | 44.9                                | 46.9                                | 2.0                  | 50.3                                  |
| 5SF25C – 3        | 44.5                                | 44.3                                | 45.2                                | 0.9                  | 49.1                                  |
| 3.5MK20F - 1      | 37.5                                | 36.8                                | 35.3                                | 2.2                  | 40.1                                  |
| 3.5MK20F - 2      | 34.5                                | 34.1                                | 34.3                                | 0.4                  | 37.7                                  |
| 3.5MK20F – 3      | 32.7                                | 35.2                                | 33.8                                | 2.5                  | 37.3                                  |
| 5MK25C - 1        | 39.3                                | 37.3                                | 36.5                                | 2.8                  | 41.5                                  |
| 5MK25C - 2        | 37.4                                | 37.6                                | 36.9                                | 0.7                  | 41.0                                  |
| 5MK25C - 3        | 37.1                                | 36.3                                | 37.3                                | 1.0                  | 40.6                                  |

TABLE AB.1: Unpublished Effect of SCM on SR Study 56-Day SR

| Mixture / Batch # | Cylinder 1<br>Result<br>(kilohm-cm) | Cylinder 2<br>Result<br>(kilohm-cm) | Cylinder 3<br>Result<br>(kilohm-cm) | Range<br>(kilohm-cm) | Surface<br>Resistivity<br>(kilohm-cm) |
|-------------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------|---------------------------------------|
| 45SL - 1          | 32.8                                | 32.5                                | 32.6                                | 0.3                  | 35.9                                  |
| 45SL - 2          | 34.1                                | 32.7                                | 33.7                                | 1.4                  | 36.9                                  |
| 45SL - 3          | 34.7                                | 34.7                                | 34.4                                | 0.3                  | 38.0                                  |
| 35SL15F – 1       | 42.4                                | 39.9                                | 41.1                                | 2.5                  | 45.2                                  |
| 35SL15F – 2       | 40.1                                | 41.7                                | 41.3                                | 1.6                  | 45.1                                  |
| 35SL15F – 3       | 39.8                                | 39.5                                | 40.9                                | 1.4                  | 44.1                                  |
| 100PC – 1         | 13.2                                | 13.8                                | 12.8                                | 1.0                  | 14.6                                  |
| 100PC - 2         | 12.3                                | 12.0                                | 12.1                                | 0.3                  | 13.3                                  |
| 100PC - 3         | 12.9                                | 12.5                                | 12.7                                | 0.4                  | 14.0                                  |
| 45SL5MK – 1       | 102.8                               | 105.5                               | 103.1                               | 2.7                  | 114.2                                 |
| 45SL5MK – 2       | 102.9                               | 101.6                               | 107.0                               | 5.4                  | 114.2                                 |
| 45SL5MK – 3       | 104.1                               | 107.2                               | 104.6                               | 3.1                  | 115.8                                 |
| 35SL15MK – 1      | 158.4                               | 155.5                               | 155.7                               | 2.9                  | 172.2                                 |
| 35SL15MK – 2      | 155.5                               | 163.2                               | 152.2                               | 11.0                 | 172.7                                 |
| 35SL15MK – 3      | 162.5                               | 161.9                               | 160.0                               | 2.5                  | 177.6                                 |
| 50C – 1           | 20.2                                | 21.0                                | 20.5                                | 0.8                  | 22.6                                  |
| 50C – 2           | 20.3                                | 19.5                                | 19.6                                | 0.8                  | 21.8                                  |
| 50C - 3           | 19.8                                | 19.7                                | 18.9                                | 0.9                  | 21.4                                  |

TABLE AB.2: Unpublished Effect of SCM on SR Study 56-Day SR Continued

## **Appendix AC**

### Unpublished Effect of SCM on SR Study 91-Day Surface Resistivity Data

| Mixture / Batch # | Cylinder 1<br>Result<br>(kilohm-cm) | Cylinder 2<br>Result<br>(kilohm-cm) | Cylinder 3<br>Result<br>(kilohm-cm) | Range<br>(kilohm-cm) | Surface<br>Resistivity<br>(kilohm-cm) |
|-------------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------|---------------------------------------|
| 20F – 1           | 26.7                                | 26.6                                | 26.3                                | 0.4                  | 29.2                                  |
| 20F - 2           | 28.0                                | 26.3                                | 25.7                                | 2.3                  | 29.3                                  |
| 20F – 3           | 262                                 | 25.3                                | 26.1                                | 0.9                  | 28.5                                  |
| 25F – 1           | 32.1                                | 32.6                                | 33.4                                | 1.3                  | 36.0                                  |
| 25F - 2           | 32.7                                | 31.6                                | 31.0                                | 1.7                  | 34.9                                  |
| 25F - 3           | 31.4                                | 31.8                                | 32.0                                | 0.6                  | 34.9                                  |
| 25C – 1           | 25.6                                | 25.1                                | 25.4                                | 0.5                  | 27.9                                  |
| 25C – 2           | 25.3                                | 25.8                                | 26.1                                | 0.8                  | 28.3                                  |
| 25C – 3           | 25.0                                | 25.2                                | 26.1                                | 1.1                  | 28.0                                  |
| 3.5SF20F - 1      | 53.5                                | 52.6                                | 52.4                                | 1.1                  | 58.1                                  |
| 3.5SF20F - 2      | 52.7                                | 54.6                                | 54.4                                | 1.9                  | 59.3                                  |
| 3.5SF20F – 3      | 54.5                                | 54.8                                | 53.6                                | 1.2                  | 59.7                                  |
| 5SF25C – 1        | 64.8                                | 62.1                                | 65.3                                | 3.2                  | 70.5                                  |
| 5SF25C – 2        | 60.4                                | 58.5                                | 61.3                                | 2.8                  | 66.1                                  |
| 5SF25C – 3        | 58.3                                | 59.1                                | 58.3                                | 0.8                  | 64.4                                  |
| 3.5MK20F - 1      | 47.3                                | 46.1                                | 45.9                                | 1.4                  | 51.0                                  |
| 3.5MK20F - 2      | 45.2                                | 44.5                                | 44.3                                | 0.9                  | 49.1                                  |
| 3.5MK20F – 3      | 42.0                                | 44.3                                | 42.5                                | 2.3                  | 47.2                                  |
| 5MK25C – 1        | 48.4                                | 44.8                                | 45.0                                | 3.6                  | 50.7                                  |
| 5MK25C - 2        | 45.0                                | 44.3                                | 44.7                                | 0.7                  | 49.1                                  |
| 5MK25C - 3        | 44.5                                | 43.1                                | 44.9                                | 1.8                  | 48.6                                  |

TABLE AC.1: Unpublished Effect of SCM on SR Study 91-Day SR
| Mixture / Batch # | Cylinder 1<br>Result<br>(kilohm-cm) | Cylinder 2<br>Result<br>(kilohm-cm) | Cylinder 3<br>Result<br>(kilohm-cm) | Range<br>(kilohm-cm) | Surface<br>Resistivity<br>(kilohm-cm) |
|-------------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------|---------------------------------------|
| 45SL – 1          | 41.3                                | 39.1                                | 40.0                                | 2.2                  | 44.1                                  |
| 45SL - 2          | 42.0                                | 40.0                                | 41.5                                | 2.0                  | 45.3                                  |
| 45SL - 3          | 43.1                                | 43.6                                | 43.9                                | 0.8                  | 47.9                                  |
| 35SL15F – 1       | 49.7                                | 49.4                                | 50.9                                | 1.5                  | 55.0                                  |
| 35SL15F – 2       | 49.6                                | 51.0                                | 49.5                                | 1.5                  | 55.0                                  |
| 35SL15F – 3       | 48.3                                | 47.4                                | 49.6                                | 2.2                  | 53.3                                  |
| 100PC – 1         | 15.9                                | 16.7                                | 15.9                                | 0.8                  | 17.8                                  |
| 100PC - 2         | 15.2                                | 14.6                                | 14.6                                | 06                   | 16.3                                  |
| 100PC - 3         | 15.4                                | 15.1                                | 15.2                                | 0.3                  | 16.7                                  |
| 45SL5MK – 1       | 113.8                               | 117.0                               | 117.7                               | 3.9                  | 127.8                                 |
| 45SL5MK – 2       | 112.5                               | 111.2                               | 115.6                               | 4.4                  | 124.4                                 |
| 45SL5MK – 3       | 112.4                               | 116.3                               | 113.7                               | 3.9                  | 125.5                                 |
| 35SL15MK – 1      | 184.3                               | 176.5                               | 175.9                               | 8.4                  | 196.8                                 |
| 35SL15MK – 2      | 177.8                               | 180.6                               | 179.7                               | 2.8                  | 197.3                                 |
| 35SL15MK – 3      | 187.3                               | 186.5                               | 186.1                               | 1.2                  | 205.3                                 |
| 50C – 1           | 31.3                                | 31.7                                | 30.6                                | 1.1                  | 34.3                                  |
| 50C - 2           | 29.6                                | 28.1                                | 28.4                                | 1.5                  | 31.5                                  |
| 50C - 3           | 28.6                                | 28.7                                | 28.9                                | 0.3                  | 31.6                                  |

TABLE AC.2: Unpublished Effect of SCM on SR Study 91-Day SR Continued

## Appendix AD

### RES 2010-007 TDOT Class D 56-Day Rapid Chloride Permeability

| Identification | Cast Date | Slice 1 Result<br>(Coulombs) | Slice 2 Result<br>(Coulombs) | Range<br>(Coulombs) | Rapid Chloride<br>Permeability<br>(Coulombs) |
|----------------|-----------|------------------------------|------------------------------|---------------------|----------------------------------------------|
| A-1            | 6/24/2010 | Leak                         | 1215                         |                     | 1220                                         |
| A-2            | 6/29/2010 | 1339                         | 1605                         | 266                 | 1470                                         |
| A-3            | 6/29/2010 | 1661                         | 1670                         | 9                   | 1670                                         |
| A-4            | 6/29/2010 | Leak                         | 1428                         |                     | 1430                                         |
| A-5            | 6/29/2010 | 1640                         | 1568                         | 72                  | 1600                                         |
| A-6            | 7/15/2010 | 1459                         | 1484                         | 25                  | 1470                                         |
| A-7            | 7/15/2010 | 1365                         | 1495                         | 130                 | 1430                                         |
| A-8            | 7/15/2010 | 1777                         | 1749                         | 28                  | 1760                                         |
| A-9            | 7/21/2010 | 1457                         | 1676                         | 219                 | 1570                                         |
| A-10           | 7/21/2010 | 1673                         | 1566                         | 107                 | 1620                                         |
|                |           |                              |                              |                     |                                              |
| B-1            | 6/22/2010 | 1602                         | 1559                         | 43                  | 1580                                         |
| B-2            | 6/22/2010 | 972                          | 693                          | 279                 | 830                                          |
| B-3            | 6/22/2010 | 1893                         | Leak                         |                     | 1890                                         |
| B-4            | 6/24/2010 | 893                          | 1605                         | 712                 | 1250                                         |
| B-5            | 6/24/2010 | 1748                         | 1591                         | 157                 | 1670                                         |
| B-6            | 7/29/2010 | 1818                         | 1591                         | 227                 | 1700                                         |
| B-7            | 7/29/2010 | 1496                         | 1613                         | 117                 | 1550                                         |
| B-8            | 8/5/2010  | 1330                         | 1483                         | 153                 | 1410                                         |
| B-9            | 8/5/2010  | 1389                         | 1482                         | 93                  | 1440                                         |
| B-10           | 8/5/2010  | 1404                         | 1588                         | 184                 | 1500                                         |
|                |           |                              |                              |                     |                                              |
| C-1            | 6/22/2010 | 1703                         | 1654                         | 49                  | 1680                                         |
| C-2            | 6/24/2010 | 1538                         | 1718                         | 180                 | 1630                                         |
| C-3            | 7/13/2010 | 1493                         | 1510                         | 17                  | 1500                                         |
| C-4            | 7/13/2010 | 1552                         | 1482                         | 70                  | 1520                                         |
| C-5            | 7/13/2010 | Leak                         | 1428                         |                     | 1430                                         |
| C-6            | 7/13/2010 | 1473                         | 1378                         | 95                  | 1430                                         |
| C-7            | 7/21/2010 | 1662                         | 1567                         | 95                  | 1610                                         |
| C-8            | 7/21/2010 | 1825                         | 1620                         | 205                 | 1720                                         |
| C-9            | 7/29/2010 | 1639                         | 1755                         | 116                 | 1700                                         |
| C-10           | 7/29/2010 | 1982                         | 1591                         | 391                 | 1790                                         |

#### TABLE AD.1: RES 2010-007 TDOT Class D 56-Day RCP

| Identification | Cast Date | Slice 1 Result<br>(Coulombs) | Slice 2 Result<br>(Coulombs) | Range<br>(Coulombs) | Rapid Chloride<br>Permeability<br>(Coulombs) |
|----------------|-----------|------------------------------|------------------------------|---------------------|----------------------------------------------|
| D-1            | 7/1/2010  | 1760                         | 1566                         | 194                 | 1660                                         |
| D-2            | 7/1/2010  | 1629                         | 1677                         | 48                  | 1650                                         |
| D-3            | 7/6/2010  | 1392                         | 1482                         | 90                  | 1440                                         |
| D-4            | 7/8/2010  | 1609                         | 1719                         | 110                 | 1660                                         |
| D-5            | 7/27/2010 | 1513                         | 1651                         | 138                 | 1580                                         |
| D-6            | 8/3/2010  | 1410                         | 1544                         | 134                 | 1480                                         |
| D-7            | 8/3/2010  | 1618                         | 1718                         | 100                 | 1670                                         |
| D-8            | 8/3/2010  | 1611                         | 1552                         | 59                  | 1580                                         |
| D-9            | 7/1/2010  | 1810                         | 1358                         | 452                 | 1580                                         |
| D-10           | 7/6/2010  | 1803                         | 1541                         | 262                 | 1670                                         |
|                |           |                              |                              |                     |                                              |
| E-1            | 7/1/2010  | 1608                         | Leak                         |                     | 1610                                         |
| E-2            | 7/6/2010  | 1589                         | 1550                         | 39                  | 1570                                         |
| E-3            | 7/6/2010  | Leak                         | 1407                         |                     | 1410                                         |
| E-4            | 7/8/2010  | 1312                         | Leak                         |                     | 1310                                         |
| E-5            | 7/8/2010  | 1538                         | 1588                         | 50                  | 1560                                         |
| E-6            | 7/8/2010  | 1384                         | 1414                         | 30                  | 1400                                         |
| E-7            | 7/27/2010 | 1515                         | 1434                         | 81                  | 1470                                         |
| E-8            | 7/27/2010 | 1580                         | 1512                         | 68                  | 1550                                         |
| E-9            | 7/27/2010 | 1679                         | 1387                         | 292                 | 1530                                         |
| E-10           | 8/3/2010  | 1392                         | 1301                         | 91                  | 1350                                         |

### TABLE AD.2: RES 2010-007 TDOT Class D 56-Day RCP Continued

## Appendix AE

|                | IABLE AE.1: RES 2011-09 IDOI Class D 56-Day RCP |                                 |                                 |                     |                                              |  |  |  |
|----------------|-------------------------------------------------|---------------------------------|---------------------------------|---------------------|----------------------------------------------|--|--|--|
| Identification | Slice 1<br>Result<br>(Coulombs)                 | Slice 2<br>Result<br>(Coulombs) | Slice 3<br>Result<br>(Coulombs) | Range<br>(Coulombs) | Rapid Chloride<br>Permeability<br>(Coulombs) |  |  |  |
| SL-1           | 665                                             | 795                             | 801                             | 136                 | 750                                          |  |  |  |
| SL-2           | 847                                             | 827                             | 807                             | 40                  | 830                                          |  |  |  |
| SL-3           | 811                                             | 724                             | 698                             | 113                 | 740                                          |  |  |  |
| SL-4           | 764                                             | 843                             | 617                             | 226                 | 740                                          |  |  |  |
| SL-5           | 1007                                            | 617                             | 890                             | 390                 | 840                                          |  |  |  |
| SL-6           | 970                                             | 920                             | 935                             | 50                  | 940                                          |  |  |  |
| SL-7           | 789                                             | 754                             | 727                             | 62                  | 760                                          |  |  |  |
| SL-8           | 927                                             | 786                             | 845                             | 141                 | 850                                          |  |  |  |
| SL-9           | 714                                             | 900                             | 965                             | 251                 | 860                                          |  |  |  |
| SL-10          | 840                                             | 875                             | 744                             | 131                 | 820                                          |  |  |  |
|                |                                                 |                                 |                                 |                     |                                              |  |  |  |
| SF-1           | 812                                             | 807                             | 806                             | 6                   | 810                                          |  |  |  |
| SF-2           | 679                                             | 805                             | 830                             | 151                 | 770                                          |  |  |  |
| SF-3           | 913                                             | 805                             | 753                             | 160                 | 820*                                         |  |  |  |
| SF-4           | 774                                             | 861                             | 880                             | 106                 | 840*                                         |  |  |  |
| SF-5           | 731                                             | Malfunction                     | 648                             | 83                  | 690                                          |  |  |  |
| SF-6           | 594                                             | 813                             | 770                             | 319                 | 730                                          |  |  |  |
| SF-7           | 865                                             | 826                             | 763                             | 102                 | 820                                          |  |  |  |
| SF-8           | 841                                             | 676                             | 824                             | 165                 | 780                                          |  |  |  |
| SF-9           | 783                                             | 808                             | 738                             | 70                  | 780                                          |  |  |  |
| SF-10          | 946                                             | 665                             | 915                             | 281                 | 840                                          |  |  |  |
|                |                                                 |                                 |                                 |                     |                                              |  |  |  |
| MK-1           | 709                                             | 612                             | 573                             | 136                 | 630                                          |  |  |  |
| MK-2           | 725                                             | 639                             | 730                             | 91                  | 700                                          |  |  |  |
| MK-3           | 813                                             | 789                             | 764                             | 49                  | 790                                          |  |  |  |
| MK-4           | 849                                             | 679                             | 816                             | 170                 | 780                                          |  |  |  |
| MK-5           | 710                                             | 726                             | 763                             | 53                  | 730                                          |  |  |  |
| MK-6           | 822                                             | Malfunction                     | 819                             | 3                   | 820                                          |  |  |  |
| MK-7           | 781                                             | 808                             | 725                             | 83                  | 770                                          |  |  |  |
| MK-8           | 873                                             | 529                             | 799                             | 74                  | 730                                          |  |  |  |
| MK-9           | 718                                             | 736                             | 667                             | 69                  | 710                                          |  |  |  |
| MK-10          | 731                                             | Malfunction                     | 828                             | 97                  | 780                                          |  |  |  |

### **RES 2011-09 TDOT Class D 56-Day Rapid Chloride Permeability**

TABLE AE.1: RES 2011-09 TDOT Class D 56-Day RCP

\* - test ran 9 hours instead of 6 due to operator error

# Appendix AF

| TABLE AF.1: RES 2013-11 TDOT Class D 56-Day RCP |                                 |                                 |                                 |                     |                                              |  |  |
|-------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------|----------------------------------------------|--|--|
| Identification                                  | Slice 1<br>Result<br>(Coulombs) | Slice 2<br>Result<br>(Coulombs) | Slice 3<br>Result<br>(Coulombs) | Range<br>(Coulombs) | Rapid Chloride<br>Permeability<br>(Coulombs) |  |  |
| CSF-1                                           | 539                             | 567                             | 559                             | 28                  | 560                                          |  |  |
| CSF-2                                           | 425                             | 486                             | 426                             | 61                  | 450                                          |  |  |
| CSF-3                                           | 509                             | 520                             | 501                             | 19                  | 510                                          |  |  |
| CSF-4                                           | 348                             | 439                             | 496                             | 148                 | 430                                          |  |  |
| CSF-5                                           | 463                             | 480                             | 477                             | 17                  | 470                                          |  |  |
| CSF-6                                           | 507                             | 510                             | 449                             | 61                  | 490                                          |  |  |
| CSF-7                                           | Malfunction                     | 488                             | 560                             | 72                  | 520                                          |  |  |
| CSF-8                                           | 438                             | 590                             | 500                             | 152                 | 510                                          |  |  |
| CSF-9                                           | 681                             | 658                             | 638                             | 43                  | 660                                          |  |  |
| CSF-10                                          | 477                             | 548                             | 458                             | 90                  | 490                                          |  |  |
| CSF-11                                          | 627                             | 628                             | 678                             | 51                  | 640                                          |  |  |
|                                                 |                                 |                                 |                                 |                     |                                              |  |  |
| CMK-1                                           | 745                             | 723                             | 763                             | 40                  | 740                                          |  |  |
| CMK-2                                           | 782                             | 749                             | 737                             | 45                  | 760                                          |  |  |
| CMK-3                                           | 803                             | 781                             | 787                             | 22                  | 790                                          |  |  |
| CMK-4                                           | 698                             | 781                             | 764                             | 83                  | 750                                          |  |  |
| CMK-5                                           | 749                             | 770                             | 730                             | 40                  | 750                                          |  |  |
| CMK-6                                           | 693                             | 739                             | 744                             | 51                  | 730                                          |  |  |
| CMK-7                                           | 800                             | 767                             | 702                             | 98                  | 760                                          |  |  |
| CMK-8                                           | 788                             | 777                             | 825                             | 48                  | 800                                          |  |  |
| CMK-9                                           | 762                             | 761                             | 759                             | 3                   | 760                                          |  |  |
| CMK-10                                          | 788                             | 809                             | 784                             | 25                  | 790                                          |  |  |
| CMK-11                                          | 810                             | 790                             | Malfunction                     | 20                  | 800                                          |  |  |

# RES 2013-11 TDOT Class D 56-Day Rapid Chloride Permeability

| Identification | Slice 1<br>Result<br>(Coulombs) | Slice 2<br>Result<br>(Coulombs) | Slice 3<br>Result<br>(Coulombs) | Range<br>(Coulombs) | Rapid Chloride<br>Permeability<br>(Coulombs) |
|----------------|---------------------------------|---------------------------------|---------------------------------|---------------------|----------------------------------------------|
| 50/35/15-1     | 802                             | 761                             | 778                             | 41                  | 780                                          |
| 50/35/15-2     | 759                             | 757                             | 755                             | 4                   | 760                                          |
| 50/35/15-3     | 772                             | 764                             | 814                             | 50                  | 780                                          |
| 50/35/15-4     | 780                             | 811                             | 813                             | 33                  | 800                                          |
| 50/35/15-5     | 875                             | 799                             | 837                             | 76                  | 840                                          |
| 50/35/15-6     | 798                             | 863                             | 839                             | 65                  | 830                                          |
| 50/35/15-7     | 662                             | Malfunction                     | 712                             | 50                  | 690                                          |
| 50/35/15-8     | 699                             | 749                             | 775                             | 76                  | 740                                          |
| 50/35/15-9     | 725                             | 746                             | 761                             | 36                  | 740                                          |
| 50/35/15-10    | 804                             | 806                             | 810                             | 6                   | 810                                          |
| 50/35/15-11    | 763                             | 817                             | 852                             | 89                  | 810                                          |
|                |                                 |                                 |                                 |                     |                                              |
| 62/35/3-1      | 893                             | 883                             | 874                             | 19                  | 880                                          |
| 62/35/3-2      | 808                             | 807                             | 829                             | 22                  | 820                                          |
| 62/35/3-3      | 839                             | 856                             | 793                             | 63                  | 830                                          |
| 62/35/3-4      | 830                             | 861                             | 835                             | 31                  | 840                                          |
| 62/35/3-5      | 967                             | 922                             | 879                             | 88                  | 920                                          |
| 62/35/3-6      | 973                             | 970                             | 947                             | 26                  | 960                                          |
| 62/35/3-7      | 944                             | 982                             | 888                             | 94                  | 940                                          |
| 62/35/3-8      | 979                             | 904                             | 1027                            | 123                 | 970                                          |
| 62/35/3-9      | 875                             | 837                             | 902                             | 65                  | 870                                          |
| 62/35/3-10     | 919                             | 962                             | 943                             | 43                  | 940                                          |
| 62/35/3-11     | 934                             | 895                             | 944                             | 49                  | 920                                          |

TABLE AF.2: RES 2013-11 TDOT Class D 56-Day RCP Continued

# Appendix AG

| <b>RES 2010-035 TDOT</b> | ' Class D 91-Day Rapid | <b>Chloride Permeability</b> |
|--------------------------|------------------------|------------------------------|
|--------------------------|------------------------|------------------------------|

| Identification | Slice 1<br>(coulombs) | Slice 2<br>(coulombs) | Range<br>(coulombs) | Result<br>(coulombs) |  |  |
|----------------|-----------------------|-----------------------|---------------------|----------------------|--|--|
| D-1            | 1198                  | 1224                  | 26                  | 1210                 |  |  |
| D-2            | 1212                  | 1126                  | 86                  | 1170                 |  |  |
| D-3            | 1273                  | 1126                  | 147                 | 1200                 |  |  |
| D-4            | 1345                  | 1235                  | 110                 | 1290                 |  |  |
| D-5            | 1231                  | Leak                  |                     | 1230                 |  |  |
| D-6            | 1286                  | 1143                  | 143                 | 1210                 |  |  |
| D-7            | 1088                  | Leak                  |                     | 1090                 |  |  |
| D-8            | 1407                  | 1177                  | 230                 | 1290                 |  |  |
| D-9            | 1326                  | 1169                  | 157                 | 1250                 |  |  |
| D-10           | 1276                  | 1235                  | 41                  | 1260                 |  |  |

TABLE AG.1: RES 2010-035 TDOT Class D 91-Day RCP

## Appendix AH

#### TDOT Class D Rapid Chloride Permeability Predicted and Measured Results

| ID # | Measured<br>28-Day<br>Accelerated<br>RCP<br>(Coulombs) | 56-Day RCP<br>Predicted by<br>Equation<br>(Coulombs) | Measured<br>56-Day<br>RCP<br>(Coulombs) | 91-Day RCP<br>Predicted by<br>Equation with<br>28-Day Data<br>(Coulombs) | 91-Day RCP<br>Predicted by<br>Equation with<br>56-Day Data<br>(Coulombs) | Measured<br>91-Day<br>RCP<br>(Coulombs) |
|------|--------------------------------------------------------|------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------|
| D-6  | 1210                                                   | 2396                                                 | 3100                                    | 1534                                                                     | 1903                                                                     | 1830                                    |
| D-7  | 1180                                                   | 2309                                                 | 3140                                    | 1486                                                                     | 1924                                                                     | 1810                                    |
| D-8  | 1390                                                   | 2939                                                 | 2940                                    | 1829                                                                     | 1819                                                                     | 1620                                    |
| D-9  | 1440                                                   | 3096                                                 | 3010                                    | 1913                                                                     | 1855                                                                     | 1690                                    |
| D-10 | 1320                                                   | 2723                                                 | 2700                                    | 1713                                                                     | 1691                                                                     | 1680                                    |
| D-11 | 1360                                                   | 2846                                                 | 2760                                    | 1779                                                                     | 1723                                                                     | 1680                                    |
| D-12 | 1420                                                   | 3033                                                 | 2620                                    | 1879                                                                     | 1649                                                                     | 1630                                    |
| D-13 | 1410                                                   | 3001                                                 | 2640                                    | 1862                                                                     | 1659                                                                     | 1740                                    |
| D-14 | 1260                                                   | 2543                                                 | 2780                                    | 1615                                                                     | 1734                                                                     | 1570                                    |
| D-15 | 1340                                                   | 2784                                                 | 2670                                    | 1746                                                                     | 1675                                                                     | 1500                                    |
| D-16 | 1070                                                   | 1998                                                 | 2790                                    | 1312                                                                     | 1739                                                                     | 1560                                    |
| D-17 | 1110                                                   | 2110                                                 | 2870                                    | 1375                                                                     | 1782                                                                     | 1890                                    |
| D-18 | 1410                                                   | 3001                                                 | 2650                                    | 1862                                                                     | 1665                                                                     | 1800                                    |
| D-19 | 1480                                                   | 3224                                                 | 2690                                    | 1980                                                                     | 1686                                                                     | 1840                                    |
| D-20 | 1210                                                   | 2396                                                 | 2780                                    | 1534                                                                     | 1734                                                                     | 1730                                    |
| D-21 | 1130                                                   | 2166                                                 | 2760                                    | 1406                                                                     | 1723                                                                     | 1660                                    |
| D-22 | 1620                                                   | 3683                                                 | 3170                                    | 2221                                                                     | 1939                                                                     | 2410                                    |
| D-23 | 1480                                                   | 3224                                                 | 2720                                    | 1980                                                                     | 1702                                                                     | 2180                                    |
| D-24 | 1370                                                   | 2877                                                 | 2800                                    | 1795                                                                     | 1745                                                                     | 1630                                    |
| D-25 | 1420                                                   | 3033                                                 | 2700                                    | 1879                                                                     | 1691                                                                     | 1810                                    |

TABLE AH.1: TDOT Class D RCP Predicted and Measured Results

# Appendix AI

#### 50/35/15 Rapid Chloride Permeability Predicted and Measured Results

| ID # | Measured<br>28-Day<br>Accelerated<br>RCP<br>(Coulombs) | 56-Day RCP<br>Predicted by<br>Equation<br>(Coulombs) | Measured<br>56-Day<br>RCP<br>(Coulombs) | 91-Day RCP<br>Predicted by<br>Equation with<br>28-Day Data<br>(Coulombs) | 91-Day RCP<br>Predicted by<br>Equation with<br>56-Day Data<br>(Coulombs) | Measured<br>91-Day<br>RCP<br>(Coulombs) |
|------|--------------------------------------------------------|------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------|
| S-6  | 570                                                    | 790                                                  | 850                                     | 590                                                                      | 632                                                                      | 710                                     |
| S-7  | 570                                                    | 790                                                  | 810                                     | 590                                                                      | 607                                                                      | 690                                     |
| S-8  | 590                                                    | 831                                                  | 870                                     | 617                                                                      | 645                                                                      | 660                                     |
| S-9  | 600                                                    | 852                                                  | 910                                     | 630                                                                      | 670                                                                      | 670                                     |
| S-10 | 620                                                    | 894                                                  | 840                                     | 657                                                                      | 626                                                                      | 700                                     |
| S-11 | 610                                                    | 873                                                  | 850                                     | 643                                                                      | 632                                                                      | 720                                     |
| S-12 | 620                                                    | 894                                                  | 890                                     | 657                                                                      | 657                                                                      | 620                                     |
| S-13 | 660                                                    | 980                                                  | 830                                     | 711                                                                      | 619                                                                      | 540                                     |
| S-14 | 620                                                    | 894                                                  | 860                                     | 657                                                                      | 638                                                                      | 550                                     |
| S-15 | 640                                                    | 937                                                  | 850                                     | 684                                                                      | 632                                                                      | 470                                     |
| S-16 | 600                                                    | 852                                                  | 830                                     | 630                                                                      | 619                                                                      | 680                                     |
| S-17 | 620                                                    | 894                                                  | 900                                     | 657                                                                      | 664                                                                      | 650                                     |
| S-18 | 620                                                    | 894                                                  | 930                                     | 657                                                                      | 682                                                                      | 720                                     |
| S-19 | 630                                                    | 915                                                  | 930                                     | 670                                                                      | 682                                                                      | 650                                     |
| S-20 | 650                                                    | 959                                                  | 920                                     | 697                                                                      | 676                                                                      | 690                                     |
| S-21 | 700                                                    | 1069                                                 | 980                                     | 766                                                                      | 713                                                                      | 630                                     |
| S-22 | 640                                                    | 937                                                  | 900                                     | 684                                                                      | 664                                                                      | 740                                     |
| S-23 | 640                                                    | 937                                                  | 950                                     | 684                                                                      | 695                                                                      | 650                                     |
| S-24 | 680                                                    | 1025                                                 | 890                                     | 738                                                                      | 657                                                                      | 710                                     |
| S-25 | 660                                                    | 980                                                  | 900                                     | 711                                                                      | 664                                                                      | 670                                     |

#### TABLE AI.1: 50/35/15 RCP Predicted and Measured Results

# Appendix AJ

Rapid Chloride Permeability Predicted (with equation based on additional results) and

#### **Measured Results**

| TABLE AJ.1: TDOT Class D RCP Predicted and Measured Results with Additional |  |         |  |  |  |
|-----------------------------------------------------------------------------|--|---------|--|--|--|
|                                                                             |  | Results |  |  |  |
|                                                                             |  |         |  |  |  |

| ID # | Measured 56-Day<br>RCP (Coulombs) | 91-Day RCP Predicted by<br>Equation with 56-Day Data<br>(Coulombs) | Measured 91-Day<br>RCP (Coulombs) |
|------|-----------------------------------|--------------------------------------------------------------------|-----------------------------------|
| D-6  | 3100                              | 2027                                                               | 1830                              |
| D-7  | 3140                              | 2050                                                               | 1810                              |
| D-8  | 2940                              | 1937                                                               | 1620                              |
| D-9  | 3010                              | 1976                                                               | 1690                              |
| D-10 | 2700                              | 1800                                                               | 1680                              |
| D-11 | 2760                              | 1834                                                               | 1680                              |
| D-12 | 2620                              | 1754                                                               | 1630                              |
| D-13 | 2640                              | 1765                                                               | 1740                              |
| D-14 | 2780                              | 1846                                                               | 1570                              |
| D-15 | 2670                              | 1782                                                               | 1500                              |
| D-16 | 2790                              | 1851                                                               | 1560                              |
| D-17 | 2870                              | 1897                                                               | 1890                              |
| D-18 | 2650                              | 1771                                                               | 1800                              |
| D-19 | 2690                              | 1794                                                               | 1840                              |
| D-20 | 2780                              | 1846                                                               | 1730                              |
| D-21 | 2760                              | 1834                                                               | 1660                              |
| D-22 | 3170                              | 2067                                                               | 2410                              |
| D-23 | 2720                              | 1811                                                               | 2180                              |
| D-24 | 2800                              | 1857                                                               | 1630                              |
| D-25 | 2700                              | 1800                                                               | 1810                              |

| ID # | Measured 56-Day<br>RCP (Coulombs) | 91-Day RCP Predicted by<br>Equation with 56-Day Data<br>(Coulombs) | Measured 91-Day<br>RCP (Coulombs) |
|------|-----------------------------------|--------------------------------------------------------------------|-----------------------------------|
| S-6  | 850                               | 665                                                                | 710                               |
| S-7  | 810                               | 638                                                                | 690                               |
| S-8  | 870                               | 678                                                                | 660                               |
| S-9  | 910                               | 705                                                                | 670                               |
| S-10 | 840                               | 658                                                                | 700                               |
| S-11 | 850                               | 665                                                                | 720                               |
| S-12 | 890                               | 691                                                                | 620                               |
| S-13 | 830                               | 651                                                                | 540                               |
| S-14 | 860                               | 671                                                                | 550                               |
| S-15 | 850                               | 665                                                                | 470                               |
| S-16 | 830                               | 651                                                                | 680                               |
| S-17 | 900                               | 698                                                                | 650                               |
| S-18 | 930                               | 718                                                                | 720                               |
| S-19 | 930                               | 718                                                                | 650                               |
| S-20 | 920                               | 711                                                                | 690                               |
| S-21 | 980                               | 751                                                                | 630                               |
| S-22 | 900                               | 698                                                                | 740                               |
| S-23 | 950                               | 731                                                                | 650                               |
| S-24 | 890                               | 691                                                                | 710                               |
| S-25 | 900                               | 698                                                                | 670                               |

TABLE AJ.2: 50/35/15 RCP Predicted and Measured Results with Additional Results

| ID #        | Measured 56-Day<br>RCP (Coulombs) | 91-Day RCP Predicted by<br>Equation with 56-Day Data<br>(Coulombs) | Measured 91-Day<br>RCP (Coulombs) |
|-------------|-----------------------------------|--------------------------------------------------------------------|-----------------------------------|
| 50/25/25F-1 | 650                               | 527                                                                | 470                               |
| 50/25/25F-2 | 620                               | 506                                                                | 440                               |
| 50/30/20F-1 | 630                               | 513                                                                | 480                               |
| 50/30/20F-2 | 650                               | 527                                                                | 510                               |
| 50/35/15F-1 | 740                               | 590                                                                | 570                               |
| 50/35/15F-2 | 680                               | 548                                                                | 600                               |
| 50/25/25C-1 | 1050                              | 797                                                                | 800                               |
| 50/25/25C-2 | 1040                              | 791                                                                | 840                               |
| 50/30/20C-1 | 1060                              | 804                                                                | 950                               |
| 50/30/20C-2 | 1000                              | 764                                                                | 890                               |
| 50/35/15C-1 | 950                               | 731                                                                | 850                               |
| 50/35/15C-2 | 930                               | 718                                                                | 820                               |
| D75PC25C-1  | 2610                              | 1748                                                               | 1700                              |
| D75PC25C-2  | 3080                              | 2016                                                               | 1940                              |
| D75PC25C-3  | 2480                              | 1673                                                               | 1790                              |
| D75PC25C-4  | 2640                              | 1765                                                               | 1720                              |
| D75PC25C-5  | 2470                              | 1667                                                               | 1990                              |
| D75PC25C-6  | 2630                              | 1759                                                               | 1950                              |
| D75PC25C-7  | 2990                              | 1965                                                               | 2150                              |
| D75PC25C-8  | 2790                              | 1851                                                               | 2160                              |

 TABLE AJ.3: Additional RCP Predicted and Measured Results with Additional Results

# Appendix AK

#### **TDOT Class D Surface Resistivity Predicted and Measured Results**

| ID # | Measured<br>28-Day SR<br>(kilohm-cm) | 56-Day SR<br>Predicted by<br>28-Day SR<br>Equation<br>(kilohm-cm) | Measured<br>56-Day SR<br>(kilohm-<br>cm) | 91-Day SR<br>Predicted by<br>28-Day SR<br>Equation<br>(kilohm-cm) | 91-Day SR<br>Predicted by<br>56-Day SR<br>Equation<br>(kilohm-cm) | Measured<br>91-Day SR<br>(kilohm-<br>cm) |
|------|--------------------------------------|-------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------|
| D-6  | 14.7                                 | 20.1                                                              | 18.7                                     | 27.1                                                              | 25.7                                                              | 27.7                                     |
| D-7  | 14.0                                 | 19.2                                                              | 17.7                                     | 26.1                                                              | 24.6                                                              | 27.1                                     |
| D-8  | 14.4                                 | 19.7                                                              | 20.3                                     | 26.7                                                              | 27.5                                                              | 25.7                                     |
| D-9  | 14.2                                 | 19.4                                                              | 18.9                                     | 26.3                                                              | 26.0                                                              | 24.1                                     |
| D-10 | 13.6                                 | 18.7                                                              | 18.6                                     | 25.5                                                              | 25.6                                                              | 26.7                                     |
| D-11 | 13.5                                 | 18.5                                                              | 18.3                                     | 25.3                                                              | 25.2                                                              | 27.1                                     |
| D-12 | 14.4                                 | 19.7                                                              | 19.4                                     | 26.7                                                              | 26.5                                                              | 27.7                                     |
| D-13 | 13.9                                 | 19.0                                                              | 18.6                                     | 25.9                                                              | 25.6                                                              | 26.4                                     |
| D-14 | 13.6                                 | 18.6                                                              | 19.6                                     | 25.4                                                              | 26.7                                                              | 24.9                                     |
| D-15 | 13.8                                 | 18.8                                                              | 21.2                                     | 25.7                                                              | 28.5                                                              | 24.9                                     |
| D-16 | 13.3                                 | 18.3                                                              | 18.8                                     | 25.0                                                              | 25.8                                                              | 24.6                                     |
| D-17 | 12.4                                 | 17.0                                                              | 17.5                                     | 23.6                                                              | 24.4                                                              | 21.9                                     |
| D-18 | 13.8                                 | 18.9                                                              | 19.8                                     | 25.7                                                              | 27.0                                                              | 24.9                                     |
| D-19 | 13.8                                 | 18.8                                                              | 20.0                                     | 25.7                                                              | 27.2                                                              | 25.3                                     |
| D-20 | 13.7                                 | 18.8                                                              | 18.3                                     | 25.6                                                              | 25.3                                                              | 24.8                                     |
| D-21 | 13.8                                 | 18.9                                                              | 18.4                                     | 25.8                                                              | 25.3                                                              | 24.9                                     |
| D-22 | 13.3                                 | 18.2                                                              | 19.7                                     | 25.0                                                              | 26.8                                                              | 25.5                                     |
| D-23 | 12.7                                 | 17.4                                                              | 19.3                                     | 24.0                                                              | 26.4                                                              | 23.3                                     |
| D-24 | 14.3                                 | 19.6                                                              | 16.5                                     | 26.6                                                              | 23.2                                                              | 27.3                                     |
| D-25 | 14.0                                 | 19.2                                                              | 16.7                                     | 26.1                                                              | 23.4                                                              | 25.7                                     |

TABLE AK.1: TDOT Class D SR Predicted and Measured Results

| ID # | Measured 28-<br>Day Accelerated<br>SR (kilohm-cm) | 56-Day SR<br>Predicted by 28-<br>Day Accelerated<br>SR Equation<br>(kilohm-cm) | Measured<br>56-Day SR<br>(kilohm-cm) | 91-Day SR<br>Predicted by 28-<br>Day Accelerated<br>SR Equation<br>(kilohm-cm) | Measured<br>91-Day SR<br>(kilohm-cm) |
|------|---------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------|--------------------------------------|
| D-6  | 26.9                                              | 22.0                                                                           | 18.7                                 | 29.2                                                                           | 27.7                                 |
| D-7  | 27.1                                              | 22.2                                                                           | 17.7                                 | 29.5                                                                           | 27.1                                 |
| D-8  | 25.6                                              | 20.4                                                                           | 20.3                                 | 27.4                                                                           | 25.7                                 |
| D-9  | 25.3                                              | 20.0                                                                           | 18.9                                 | 27.1                                                                           | 24.1                                 |
| D-10 | 24.9                                              | 19.6                                                                           | 18.6                                 | 26.5                                                                           | 26.7                                 |
| D-11 | 24.6                                              | 19.3                                                                           | 18.3                                 | 26.2                                                                           | 27.1                                 |
| D-12 | 24.9                                              | 19.6                                                                           | 19.4                                 | 26.6                                                                           | 27.7                                 |
| D-13 | 25.6                                              | 20.4                                                                           | 18.6                                 | 27.4                                                                           | 26.4                                 |
| D-14 | 25.9                                              | 20.8                                                                           | 19.6                                 | 27.9                                                                           | 24.9                                 |
| D-15 | 25.0                                              | 19.8                                                                           | 21.2                                 | 26.8                                                                           | 24.9                                 |
| D-16 | 25.2                                              | 19.9                                                                           | 18.8                                 | 26.9                                                                           | 24.6                                 |
| D-17 | 25.3                                              | 20.1                                                                           | 17.5                                 | 27.1                                                                           | 21.9                                 |
| D-18 | 24.0                                              | 18.5                                                                           | 19.8                                 | 25.4                                                                           | 24.9                                 |
| D-19 | 24.0                                              | 18.6                                                                           | 20.0                                 | 25.4                                                                           | 25.3                                 |
| D-20 | 22.4                                              | 16.7                                                                           | 18.3                                 | 23.3                                                                           | 24.8                                 |
| D-21 | 23.2                                              | 17.7                                                                           | 18.4                                 | 24.4                                                                           | 24.9                                 |
| D-22 | 21.5                                              | 15.8                                                                           | 19.7                                 | 22.2                                                                           | 25.5                                 |
| D-23 | 21.6                                              | 15.9                                                                           | 19.3                                 | 22.3                                                                           | 23.3                                 |
| D-24 | 23.4                                              | 17.8                                                                           | 16.5                                 | 24.5                                                                           | 27.3                                 |
| D-25 | 23.7                                              | 18.3                                                                           | 16.7                                 | 25.0                                                                           | 25.7                                 |

#### TABLE AK.2: TDOT Class D SR Predicted and Measured Results Continued

# Appendix AL

#### 50/35/15 Surface Resistivity Predicted and Measured Results

| ID#  | Measured<br>28-Day<br>SR<br>(kilohm-<br>cm) | 56-Day SR<br>Predicted by<br>28-Day SR<br>Equation<br>(kilohm-cm) | Measured<br>56-Day<br>SR<br>(kilohm-<br>cm) | 91-Day SR<br>Predicted by<br>28-Day SR<br>Equation<br>(kilohm-cm) | 91-Day SR<br>Predicted by<br>56-Day SR<br>Equation<br>(kilohm-cm) | Measured<br>91-Day<br>SR<br>(kilohm-<br>cm) |
|------|---------------------------------------------|-------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------|
| S-6  | 30.9                                        | 41.9                                                              | 40.4                                        | 50.3                                                              | 48.4                                                              | 46.5                                        |
| S-7  | 31.4                                        | 42.6                                                              | 40.8                                        | 50.9                                                              | 48.9                                                              | 45.4                                        |
| S-8  | 33.8                                        | 45.9                                                              | 45.0                                        | 54.2                                                              | 52.9                                                              | 53.9                                        |
| S-9  | 32.6                                        | 44.3                                                              | 44.0                                        | 52.6                                                              | 52.0                                                              | 51.0                                        |
| S-10 | 31.5                                        | 42.8                                                              | 50.2                                        | 51.1                                                              | 57.9                                                              | 50.7                                        |
| S-11 | 31.8                                        | 43.2                                                              | 48.7                                        | 51.5                                                              | 56.4                                                              | 50.5                                        |
| S-12 | 32.9                                        | 44.6                                                              | 47.2                                        | 52.9                                                              | 55.0                                                              | 64.7                                        |
| S-13 | 29.4                                        | 40.0                                                              | 43.9                                        | 48.3                                                              | 51.9                                                              | 61.1                                        |
| S-14 | 29.0                                        | 39.4                                                              | 39.3                                        | 47.7                                                              | 47.3                                                              | 50.8                                        |
| S-15 | 29.6                                        | 40.2                                                              | 39.2                                        | 48.5                                                              | 47.2                                                              | 48.0                                        |
| S-16 | 32.1                                        | 43.6                                                              | 43.5                                        | 51.9                                                              | 51.4                                                              | 49.2                                        |
| S-17 | 29.9                                        | 40.6                                                              | 39.6                                        | 48.9                                                              | 47.7                                                              | 46.2                                        |
| S-18 | 33.3                                        | 45.1                                                              | 47.1                                        | 53.5                                                              | 54.9                                                              | 51.5                                        |
| S-19 | 32.0                                        | 43.4                                                              | 44.5                                        | 51.7                                                              | 52.4                                                              | 51.6                                        |
| S-20 | 33.3                                        | 45.1                                                              | 43.2                                        | 53.5                                                              | 51.1                                                              | 51.9                                        |
| S-21 | 32.3                                        | 43.8                                                              | 42.4                                        | 52.2                                                              | 50.4                                                              | 50.6                                        |
| S-22 | 30.9                                        | 42.0                                                              | 39.6                                        | 50.4                                                              | 47.6                                                              | 46.6                                        |
| S-23 | 30.3                                        | 41.1                                                              | 38.1                                        | 49.4                                                              | 46.2                                                              | 45.7                                        |
| S-24 | 32.9                                        | 44.7                                                              | 42.1                                        | 53.0                                                              | 50.1                                                              | 55.6                                        |
| S-25 | 31.4                                        | 42.6                                                              | 41.3                                        | 50.9                                                              | 49.3                                                              | 56.5                                        |

TABLE AL.1: 50/35/15 SR Predicted and Measured Results

| ID # | Measured 28-<br>Day Accelerated<br>SR (kilohm-cm) | 56-Day SR<br>Predicted by 28-<br>Day Accelerated<br>SR Equation<br>(kilohm-cm) | Measured<br>56-Day SR<br>(kilohm-<br>cm) | 91-Day SR<br>Predicted by 28-<br>Day Accelerated<br>SR Equation<br>(kilohm-cm) | Measured<br>91-Day SR<br>(kilohm-cm) |
|------|---------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------|
| S-6  | 42.9                                              | 43.8                                                                           | 40.4                                     | 48.4                                                                           | 46.5                                 |
| S-7  | 44.1                                              | 45.6                                                                           | 40.8                                     | 48.9                                                                           | 45.4                                 |
| S-8  | 46.7                                              | 49.7                                                                           | 45.0                                     | 52.9                                                                           | 53.9                                 |
| S-9  | 44.6                                              | 46.4                                                                           | 44.0                                     | 52.0                                                                           | 51.0                                 |
| S-10 | 41.8                                              | 42.1                                                                           | 50.2                                     | 57.9                                                                           | 50.7                                 |
| S-11 | 42.4                                              | 43.0                                                                           | 48.7                                     | 56.4                                                                           | 50.5                                 |
| S-12 | 41.8                                              | 42.1                                                                           | 47.2                                     | 55.0                                                                           | 64.7                                 |
| S-13 | 41.3                                              | 41.4                                                                           | 43.9                                     | 51.9                                                                           | 61.1                                 |
| S-14 | 42.5                                              | 43.3                                                                           | 39.3                                     | 47.3                                                                           | 50.8                                 |
| S-15 | 41.7                                              | 42.0                                                                           | 39.2                                     | 47.2                                                                           | 48.0                                 |
| S-16 | 43.1                                              | 44.1                                                                           | 43.5                                     | 51.4                                                                           | 49.2                                 |
| S-17 | 44.0                                              | 45.5                                                                           | 39.6                                     | 47.7                                                                           | 46.2                                 |
| S-18 | 40.4                                              | 40.2                                                                           | 47.1                                     | 54.9                                                                           | 51.5                                 |
| S-19 | 42.9                                              | 43.9                                                                           | 44.5                                     | 52.4                                                                           | 51.6                                 |
| S-20 | 39.6                                              | 38.9                                                                           | 43.2                                     | 51.1                                                                           | 51.9                                 |
| S-21 | 39.0                                              | 38.1                                                                           | 42.4                                     | 50.4                                                                           | 50.6                                 |
| S-22 | 40.9                                              | 40.8                                                                           | 39.6                                     | 47.6                                                                           | 46.6                                 |
| S-23 | 39.3                                              | 38.5                                                                           | 38.1                                     | 46.2                                                                           | 45.7                                 |
| S-24 | 38.7                                              | 37.6                                                                           | 42.1                                     | 50.1                                                                           | 55.6                                 |
| S-25 | 39.8                                              | 39.3                                                                           | 41.3                                     | 49.3                                                                           | 56.5                                 |

#### TABLE AL.2: 50/35/15 SR Predicted and Measured Results Continued

## Appendix AM

### Surface Resistivity Predicted (with equation based on additional results) and Measured

#### Results

| ID#  | Measured<br>28-Day<br>SR<br>(kilohm-<br>cm) | 56-Day SR<br>Predicted by<br>28-Day SR<br>Equation<br>(kilohm-cm) | Measured<br>56-Day<br>SR<br>(kilohm-<br>cm) | 91-Day SR<br>Predicted by<br>28-Day SR<br>Equation<br>(kilohm-cm) | 91-Day SR<br>Predicted by<br>56-Day SR<br>Equation<br>(kilohm-cm) | Measured<br>91-Day<br>SR<br>(kilohm-<br>cm) |
|------|---------------------------------------------|-------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------|
| D-6  | 14.7                                        | 21.7                                                              | 18.7                                        | 29.6                                                              | 26.1                                                              | 27.7                                        |
| D-7  | 14.0                                        | 20.8                                                              | 17.7                                        | 28.7                                                              | 25.0                                                              | 27.1                                        |
| D-8  | 14.4                                        | 21.3                                                              | 20.3                                        | 29.3                                                              | 27.9                                                              | 25.7                                        |
| D-9  | 14.2                                        | 21.1                                                              | 18.9                                        | 29.0                                                              | 26.3                                                              | 24.1                                        |
| D-10 | 13.6                                        | 20.3                                                              | 18.6                                        | 28.2                                                              | 26.0                                                              | 26.7                                        |
| D-11 | 13.5                                        | 20.2                                                              | 18.3                                        | 28.1                                                              | 25.7                                                              | 27.1                                        |
| D-12 | 14.4                                        | 21.3                                                              | 19.4                                        | 29.3                                                              | 26.9                                                              | 27.7                                        |
| D-13 | 13.9                                        | 20.7                                                              | 18.6                                        | 28.6                                                              | 26.0                                                              | 26.4                                        |
| D-14 | 13.6                                        | 20.3                                                              | 19.6                                        | 28.2                                                              | 27.1                                                              | 24.9                                        |
| D-15 | 13.8                                        | 20.6                                                              | 21.2                                        | 28.5                                                              | 28.9                                                              | 24.9                                        |
| D-16 | 13.3                                        | 20.0                                                              | 18.8                                        | 27.8                                                              | 26.2                                                              | 24.6                                        |
| D-17 | 12.4                                        | 18.9                                                              | 17.5                                        | 26.7                                                              | 24.8                                                              | 21.9                                        |
| D-18 | 13.8                                        | 20.6                                                              | 19.8                                        | 28.5                                                              | 27.3                                                              | 24.9                                        |
| D-19 | 13.8                                        | 20.6                                                              | 20.0                                        | 28.5                                                              | 27.5                                                              | 25.3                                        |
| D-20 | 13.7                                        | 20.5                                                              | 18.3                                        | 28.3                                                              | 25.7                                                              | 24.8                                        |
| D-21 | 13.8                                        | 20.6                                                              | 18.4                                        | 28.5                                                              | 25.8                                                              | 24.9                                        |
| D-22 | 13.3                                        | 20.0                                                              | 19.7                                        | 27.8                                                              | 27.2                                                              | 25.5                                        |
| D-23 | 12.7                                        | 19.3                                                              | 19.3                                        | 27.0                                                              | 26.8                                                              | 23.3                                        |
| D-24 | 14.3                                        | 21.2                                                              | 16.5                                        | 29.1                                                              | 23.7                                                              | 27.3                                        |
| D-25 | 14.0                                        | 20.8                                                              | 16.7                                        | 28.7                                                              | 23.9                                                              | 25.7                                        |

TABLE AM.1: TDOT Class D SR Predicted and Measured Results with Additional Results

| ID # | Measured<br>28-Day<br>SR<br>(kilohm-<br>cm) | 56-Day SR<br>Predicted by<br>28-Day SR<br>Equation<br>(kilohm-cm) | Measured<br>56-Day<br>SR<br>(kilohm-<br>cm) | 91-Day SR<br>Predicted by<br>28-Day SR<br>Equation<br>(kilohm-cm) | 91-Day SR<br>Predicted by<br>56-Day SR<br>Equation<br>(kilohm-cm) | Measured<br>91-Day<br>SR<br>(kilohm-<br>cm) |
|------|---------------------------------------------|-------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------|
| S-6  | 30.9                                        | 41.0                                                              | 40.4                                        | 50.7                                                              | 49.9                                                              | 46.5                                        |
| S-7  | 31.4                                        | 41.6                                                              | 40.8                                        | 51.4                                                              | 50.3                                                              | 45.4                                        |
| S-8  | 33.8                                        | 44.4                                                              | 45.0                                        | 54.5                                                              | 54.9                                                              | 53.9                                        |
| S-9  | 32.6                                        | 43.0                                                              | 44.0                                        | 52.9                                                              | 53.8                                                              | 51.0                                        |
| S-10 | 31.5                                        | 41.7                                                              | 50.2                                        | 51.5                                                              | 60.6                                                              | 50.7                                        |
| S-11 | 31.8                                        | 42.1                                                              | 48.7                                        | 51.9                                                              | 58.9                                                              | 50.5                                        |
| S-12 | 32.9                                        | 43.4                                                              | 47.2                                        | 53.3                                                              | 57.3                                                              | 64.7                                        |
| S-13 | 29.4                                        | 39.2                                                              | 43.9                                        | 48.8                                                              | 53.7                                                              | 61.1                                        |
| S-14 | 29.0                                        | 38.7                                                              | 39.3                                        | 48.2                                                              | 48.6                                                              | 50.8                                        |
| S-15 | 29.6                                        | 39.4                                                              | 39.2                                        | 49.0                                                              | 48.5                                                              | 48.0                                        |
| S-16 | 32.1                                        | 42.4                                                              | 43.5                                        | 52.3                                                              | 53.2                                                              | 49.2                                        |
| S-17 | 29.9                                        | 39.8                                                              | 39.6                                        | 49.4                                                              | 49.0                                                              | 46.2                                        |
| S-18 | 33.3                                        | 43.8                                                              | 47.1                                        | 53.8                                                              | 57.2                                                              | 51.5                                        |
| S-19 | 32.0                                        | 42.3                                                              | 44.5                                        | 52.1                                                              | 54.3                                                              | 51.6                                        |
| S-20 | 33.3                                        | 43.8                                                              | 43.2                                        | 53.8                                                              | 52.9                                                              | 51.9                                        |
| S-21 | 32.3                                        | 42.6                                                              | 42.4                                        | 52.5                                                              | 52.0                                                              | 50.6                                        |
| S-22 | 30.9                                        | 41.0                                                              | 39.6                                        | 50.7                                                              | 49.0                                                              | 46.6                                        |
| S-23 | 30.3                                        | 40.3                                                              | 38.1                                        | 49.9                                                              | 47.3                                                              | 45.7                                        |
| S-24 | 32.9                                        | 43.4                                                              | 42.1                                        | 53.3                                                              | 51.7                                                              | 55.6                                        |
| S-25 | 31.4                                        | 41.6                                                              | 41.3                                        | 51.4                                                              | 50.8                                                              | 56.5                                        |

TABLE AM.2: 50/35/15 SR Predicted and Measured Results with Additional Results

| ID #         | Measured<br>28-Day<br>SR<br>(kilohm-<br>cm) | 56-Day SR<br>Predicted by<br>28-Day SR<br>Equation<br>(kilohm-cm) | Measured<br>56-Day<br>SR<br>(kilohm-<br>cm) | 91-Day SR<br>Predicted by<br>28-Day SR<br>Equation<br>(kilohm-cm) | 91-Day SR<br>Predicted by<br>56-Day SR<br>Equation<br>(kilohm-cm) | Measured<br>91-Day<br>SR<br>(kilohm-<br>cm) |
|--------------|---------------------------------------------|-------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------|
| 20F - 1      | 12.4                                        | 18.9                                                              | 17.7                                        | 26.7                                                              | 25.0                                                              | 29.2                                        |
| 20F - 2      | 13                                          | 19.6                                                              | 18.1                                        | 27.4                                                              | 25.5                                                              | 29.3                                        |
| 20F - 3      | 13.2                                        | 19.9                                                              | 17.9                                        | 27.7                                                              | 25.2                                                              | 28.5                                        |
| 25F - 1      | 14.1                                        | 20.9                                                              | 22.1                                        | 28.9                                                              | 29.8                                                              | 36                                          |
| 25F - 2      | 14.3                                        | 21.2                                                              | 22.5                                        | 29.1                                                              | 30.3                                                              | 34.9                                        |
| 25F - 3      | 14                                          | 20.8                                                              | 22.1                                        | 28.7                                                              | 29.8                                                              | 34.9                                        |
| 25C - 1      | 12.5                                        | 19.0                                                              | 17.8                                        | 26.8                                                              | 25.1                                                              | 27.9                                        |
| 25C - 2      | 12.8                                        | 19.4                                                              | 18.2                                        | 27.2                                                              | 25.6                                                              | 28.3                                        |
| 25C - 3      | 12.7                                        | 19.3                                                              | 18                                          | 27.0                                                              | 25.4                                                              | 28                                          |
| 3.5SF20F - 1 | 27.5                                        | 36.9                                                              | 43.3                                        | 46.3                                                              | 53.0                                                              | 58.1                                        |
| 3.5SF20F - 2 | 28.1                                        | 37.6                                                              | 44.8                                        | 47.1                                                              | 54.7                                                              | 59.3                                        |
| 3.5SF20F – 3 | 28.4                                        | 38.0                                                              | 45                                          | 47.5                                                              | 54.9                                                              | 59.7                                        |
| 5SF25C - 1   | 31.1                                        | 41.2                                                              | 53.2                                        | 51.0                                                              | 63.9                                                              | 70.5                                        |
| 5SF25C - 2   | 30.3                                        | 40.3                                                              | 50.3                                        | 49.9                                                              | 60.7                                                              | 66.1                                        |
| 5SF25C - 3   | 29.3                                        | 39.1                                                              | 49.1                                        | 48.6                                                              | 59.4                                                              | 64.4                                        |
| 3.5MK20F - 1 | 30.9                                        | 41.0                                                              | 40.1                                        | 50.7                                                              | 49.5                                                              | 51                                          |
| 3.5MK20F - 2 | 29.7                                        | 39.5                                                              | 37.7                                        | 49.1                                                              | 46.9                                                              | 49.1                                        |
| 3.5MK20F - 3 | 29.3                                        | 39.1                                                              | 37.3                                        | 48.6                                                              | 46.5                                                              | 47.2                                        |
| 5MK25C - 1   | 33.1                                        | 43.6                                                              | 41.5                                        | 53.6                                                              | 51.1                                                              | 50.7                                        |
| 5MK25C - 2   | 33.1                                        | 43.6                                                              | 41                                          | 53.6                                                              | 50.5                                                              | 49.1                                        |
| 5MK25C - 3   | 32.8                                        | 43.2                                                              | 40.6                                        | 53.2                                                              | 50.1                                                              | 48.6                                        |
| 45SL – 1     | 29.9                                        | 39.8                                                              | 35.9                                        | 49.4                                                              | 44.9                                                              | 44.1                                        |
| 45SL - 2     | 30.9                                        | 41.0                                                              | 36.9                                        | 50.7                                                              | 46.0                                                              | 45.3                                        |
| 45SL - 3     | 32.7                                        | 43.1                                                              | 38                                          | 53.0                                                              | 47.2                                                              | 47.9                                        |
| 35SL15F - 1  | 31.8                                        | 42.1                                                              | 45.2                                        | 51.9                                                              | 55.1                                                              | 55                                          |
| 35SL15F - 2  | 31.8                                        | 42.1                                                              | 45.1                                        | 51.9                                                              | 55.0                                                              | 55                                          |
| 35SL15F - 3  | 30.6                                        | 40.6                                                              | 44.1                                        | 50.3                                                              | 53.9                                                              | 53.3                                        |

 TABLE AM.3: Effect of SCM on SR Study SR Predicted and Measured Results with Additional Results

| ID #         | Measured<br>28-Day SR<br>(kilohm-<br>cm) | 56-Day SR<br>Predicted by<br>28-Day SR<br>Equation<br>(kilohm-cm) | Measured<br>56-Day SR<br>(kilohm-<br>cm) | 91-Day SR<br>Predicted by<br>28-Day SR<br>Equation<br>(kilohm-cm) | 91-Day SR<br>Predicted by<br>56-Day SR<br>Equation<br>(kilohm-cm) | Measured<br>91-Day SR<br>(kilohm-<br>cm) |
|--------------|------------------------------------------|-------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------|
| 100PC – 1    | 12.3                                     | 18.8                                                              | 14.6                                     | 26.5                                                              | 21.6                                                              | 17.8                                     |
| 100PC - 2    | 11.5                                     | 17.8                                                              | 13.3                                     | 25.5                                                              | 20.2                                                              | 16.3                                     |
| 100PC - 3    | 12                                       | 18.4                                                              | 14                                       | 26.1                                                              | 21.0                                                              | 16.7                                     |
| 45SL5MK – 1  | 101.4                                    | 125.1                                                             | 114.2                                    | 142.3                                                             | 130.6                                                             | 127.8                                    |
| 45SL5MK – 2  | 100.5                                    | 124.0                                                             | 114.2                                    | 141.2                                                             | 130.6                                                             | 124.4                                    |
| 45SL5MK – 3  | 101.1                                    | 124.7                                                             | 115.8                                    | 141.9                                                             | 132.3                                                             | 125.5                                    |
| 35SL15MK - 1 | 139.7                                    | 170.7                                                             | 172.2                                    | 192.1                                                             | 194.0                                                             | 196.8                                    |
| 35SL15MK - 2 | 137.9                                    | 168.6                                                             | 172.7                                    | 189.8                                                             | 194.5                                                             | 197.3                                    |
| 35SL15MK - 3 | 139.7                                    | 170.7                                                             | 177.6                                    | 192.1                                                             | 199.9                                                             | 205.3                                    |
| 50C - 1      | 13.1                                     | 19.7                                                              | 22.6                                     | 27.6                                                              | 30.4                                                              | 34.3                                     |
| 50C - 2      | 13                                       | 19.6                                                              | 21.8                                     | 27.4                                                              | 29.5                                                              | 31.5                                     |
| 50C - 3      | 12.6                                     | 19.2                                                              | 21.4                                     | 26.9                                                              | 29.1                                                              | 31.6                                     |

 TABLE AM.4: Effect of SCM on SR Study SR Predicted and Measured Results with

 Additional Results Continued

| ID #        | Measured 56-Day<br>SR (kilohm-cm) | 91-Day SR Predicted by 56-<br>Day SR Equation (kilohm-cm) | Measured 91-Day<br>SR (kilohm-cm) |
|-------------|-----------------------------------|-----------------------------------------------------------|-----------------------------------|
| 50/25/25F-1 | 59                                | 70.2                                                      | 67.7                              |
| 50/25/25F-2 | 56.9                              | 67.9                                                      | 65.6                              |
| 50/30/20F-1 | 52.0                              | 62.5                                                      | 61.0                              |
| 50/30/20F-2 | 52.8                              | 63.4                                                      | 60.9                              |
| 50/35/15F-1 | 52.6                              | 63.2                                                      | 67.8                              |
| 50/35/15F-2 | 55.7                              | 66.6                                                      | 67.6                              |
| 50/25/25C-1 | 44.4                              | 54.2                                                      | 54.9                              |
| 50/25/25C-2 | 43.5                              | 53.2                                                      | 53.7                              |
| 50/30/20C-1 | 40.1                              | 49.5                                                      | 43.3                              |
| 50/30/20C-2 | 39.7                              | 49.1                                                      | 43.3                              |
| 50/35/15C-1 | 50.0                              | 60.4                                                      | 54.5                              |
| 50/35/15C-2 | 46.9                              | 57.0                                                      | 59.0                              |

TABLE AM.5: TTU Slag Study SR Predicted and Measured Results with Additional Results