Advanced Algebra and Trigonometry

The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. These practices rest on important "processes and proficiencies" with longstanding importance in mathematics education. The first of these are the NCTM process standards of problem solving, reasoning and proof, communication, representation, and connections. The second are the strands of mathematical proficiency specified in the National Research Council's report Adding It Up: adaptive reasoning, strategic competence, conceptual understanding (comprehension of mathematical concepts, operations and relations), procedural fluency (skill in carrying out procedures flexibly, accurately, efficiently and appropriately), and productive disposition (habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one's own efficacy).

1. Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

2. Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents -and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

3. Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

4. Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

5. Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

6. Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

7. Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well-remembered $7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $x^{2}+9 x+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5-3(x-y)^{2}$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

8. Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1,2) with slope 3 , middle school students might abstract the equation $(y-2) /(x-1)=3$. Noticing the regularity in the way terms cancel when expanding $(x-1)(x+1),(x-1)\left(x^{2}+x+1\right)$, and $(x-1)\left(x^{3}+x^{2}+x+1\right)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

1. Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., v, |v|, \||v||,v).
2. Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point.
3. Solve problems involving velocity and other quantities that can be represented by vectors.
4. Add and subtract vectors.
a. Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes.
b. Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum.
c. Understand vector subtraction $\boldsymbol{v}-\boldsymbol{w}$ as $\boldsymbol{v}+(-\boldsymbol{w})$, where $\boldsymbol{-} \boldsymbol{w}$ is the additive inverse of \boldsymbol{w}, with the same magnitude as \boldsymbol{w} and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise.
5. Multiply a vector by a scalar.
a. Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication component-wise, e.g., as $c\left(v_{x}, v_{y}\right)=\left(c v_{x}, c v_{y}\right)$.
b. Compute the magnitude of a scalar multiple $c \boldsymbol{v}$ using $\||c \boldsymbol{v} \|=|c| v$. Compute the direction of $c \boldsymbol{v}$ knowing that when $|c| v \neq 0$, the direction of $c v$ is either along \boldsymbol{v} (for $c>0$) or against \boldsymbol{v} (for $c<0$).
6. Calculate and interpret the dot product of two vectors.
7. Use matrices to represent and manipulate data, e.g., to represent payoffs or incidence relationships in a network.
8. Multiply matrices by scalars to produce new matrices, e.g., as when all of the payoffs in a game are doubled.
9. Add, subtract, and multiply matrices of appropriate dimensions.
10. Understand that, unlike multiplication of numbers, matrix multiplication for square matrices is not a commutative operation, but still satisfies the associative and distributive properties.
11. Understand that the zero and identity matrices play a role in matrix addition and multiplication similar to the role of 0 and 1 in the real numbers. The determinant of a square matrix is nonzero if and only if the matrix has a multiplicative inverse.
12. Multiply a vector (regarded as a matrix with one column) by a matrix of suitable dimensions to produce another vector. Work with matrices as transformations of vectors.
13. Work with 2×2 matrices as transformations of the plane, and interpret the absolute value of the determinant in terms of area.

	Domain	Cluster	Standard
	$\begin{aligned} & \text { Sequences and Series } \\ & \text { (A-S) } \end{aligned}$		1. Demonstrate an understanding of sequences by representing them recursively and explicitly. 2. Use sigma notation to represent a series; expand and collect expressions in both finite and ininite settings. 3. Derive and use the formulas for the general term and summation of finite or infinite arithmetic and geometric series, if they exist. a. Determine whether a given arithmetic or geometric series converges or diverges. b. Find the sum of a given geometric series (both infinite and finite). c. Find the sum of a finite arithmetic series. 4. Understand that series represent the approximation of a number when truncated; estimate truncation error in specific examples. 5. Know and apply the Binomial Theorem for the expansion of $(x+y)^{n}$ in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle.
$\begin{aligned} & \frac{0}{0} \\ & 00 \\ & 00 \\ & \frac{0}{4} \end{aligned}$			1. Represent a system of linear equations as a single matrix equation in a vector variable. 2. Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3×3 or greater). 3. Solve nonlinear inequalities (quadratic, trigonometric, conic, exponential, logarithmic, and rational) by graphing (solutions in interval notation if one-variable), by hand and with appropriate technology. 4. Solve systems of nonlinear inequalities by graphing.
		.\ddot{U}	1. Display all of the conic sections as portions of a cone. 2. From an equation in standard form, graph the appropriate conic section: ellipses, hyperbolas, circles, and parabolas. Demonstrate an understanding of the relationship between their standard algebraic form and the graphical characteristics. 3. Transform equations of conic sections to convert between general and standard form.

	Domain	Cluster	Standard
			1. Understand how the algebraic properties of an equation transform the geometric properties of its graph. For example, given a function, describe the transformation of the graph resulting from the manipulation of the algebraic properties of the equation (i.e., translations, stretches, and changes in periodicity and amplitude). 2. Develop an understanding of functions as elements that can be operated upon to get new functions: addition, subtraction, multiplication, division, and composition of functions. 3. Compose functions. For example, if $T(y)$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $T(h(t)$) is the temperature at the location of the weather balloon as a function of time. 4. Construct the difference quotient for a given function and simplify the resulting expression. 5. Find inverse functions (including exponential and logarithmic). a. Calculate the inverse of a function, $f(x)$, with respect to each of the functional operations; in other words, the additive inverse, $-f(x)$, the multiplicative inverse, $\frac{1}{f(x)}$, and the inverse with respect to composition, $f^{-1}(x)$. Understand the algebraic and graphical implications of each type. b. Verify by composition that one function is the inverse of another. c. Read values of an inverse function from a graph or a table, given that the function has an inverse. d. Produce an invertible function from a non-invertible function by restricting the domain. Recognize a function is invertible if and only if it is one-to-one. 6. Explain why the graph of a function and its inverse are reflections of one another over the line $y=x$.
			1. Determine whether a function is even, odd, or neither. 2. Identify or analyze the distinguishing properties of exponential, polynomial, logarithmic, trigonometric, and rational functions from tables, graphs, and equations. 3. Identify the real zeros of a function and explain the relationship between the real zeros and the x-intercepts of the graph of a function (polynomial, rational, exponential, logarithmic, and trigonometric). 4. Identify characteristics of graphs based on a set of conditions or on a general equation such as $\mathrm{y}=a \mathrm{ax}^{2}+\mathrm{c}$. 5. Visually locate critical points on the graphs of functions and determine if each critical point is a minimum, a maximum, or point of inflection. Describe intervals of concavity and increasing and decreasing. 6. Graph rational functions, identifying zeros, asymptotes (including slant), and holes when suitable factorizations are available, and showing end-behavior. 7. Solve real world problems that can be modeled using quadratic, exponential, or logarithmic functions ${ }^{\star}$ (by hand and with appropriate technology).
			1. Convert from radians to degrees and from degrees to radians. 2. Use special triangles to determine geometrically the values of sine, cosine, tangent for $\pi / 3, \pi / 4$ and $\pi / 6$, and use the unit circle to express the values of sine, cosine, and tangent for $\pi-x, \pi+x$, and $2 \pi-x$ in terms of their values for x, where x is any real number. 3. Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.
			1. Interpret transformations of trigonometric functions. 2. Match a trigonometric equation with its graph. 3. Determine the difference made by choice of units for angle measurement when graphing a trigonometric function. 4. Graph the sine, cosine, and tangent functions and identify characteristics such as period, amplitude, phase shift, and asymptotes.

	Domain	Cluster	Standard
$$			1. Use the definitions of the basic trigonometric ratios as ratios of sides in a right triangle to solve problems about lengths of sides and measures of angles. 2. Derive the formula $A=1 / 2 a b \sin (C)$ for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side. 3. Derive and apply the formulas for the area of sector of a circle. 4. Calculate the arc length of a circle subtended by a central angle. 5. Understand and apply the Law of Sines (including the ambiguous case) and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).
			1. Apply trigonometric identities to verify identities and solve equations. Identities include: Pythagorean, quotient, sum/difference, double-angle, and half-angle.
			1. Create scatter plots, analyze patterns and describe relationships for bivariate data (linear, polynomial, trigonometric or exponential) to model real-world phenomena and to make predictions. 2. Determine a regression equation to model a set of bivariate data. Justify why this equation best fits the data. 3. Use a regression equation modeling bivariate data to make predictions. Identify possible considerations regarding the accuracy of predictions when interpolating or extrapolating.

Bridge Math

The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. These practices rest on important "processes and proficiencies" with longstanding importance in mathematics education. The first of these are the NCTM process standards of problem solving, reasoning and proof, communication, representation, and connections. The second are the strands of mathematical proficiency specified in the National Research Council's report Adding It Up: adaptive reasoning, strategic competence, conceptual understanding (comprehension of mathematical concepts, operations and relations), procedural fluency (skill in carrying out procedures flexibly, accurately, efficiently and appropriately), and productive disposition (habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one's own efficacy).

1. Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

2. Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents - and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

3. Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

4. Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

5. Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

6. Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

7. Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well-remembered $7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $x^{2}+9 x+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5-3(x-y)^{2}$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

8. Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through $(1,2)$ with slope 3 , middle school students might abstract the equation $(y-2) /(x-1)=3$. Noticing the regularity in the way terms cancel when expanding $(x-1)(x+1),(x-1)\left(x^{2}+x+1\right)$, and $(x-1)\left(x^{3}+x^{2}+x+1\right)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

1. Identify the graph of a linear inequality on the number line.
.

3. Given an equation of a line, write an accurate definition of a line by determining the unique characteristics that define it (i.e. slope and intercepts).
4. Compute the perimeter of simple composite geometric figures with unknown side lengths.
5. Apply a variety of strategies to determine the circumference and the area for circles.
6. Investigate the area of a sector and the arc length of a circle.
7. Understand that a line parallel to one side of a triangle divides the other two sides proportionally, and conversely.
8. Apply similar triangles to solve problems, such as finding heights and distances.
9. Use several angle properties to find an unknown angle measure (i.e. supplementary, complementary, vertical, angles along a transversal, and sum of angles in a polygon).
10. Describe, compare, and contrast plane and solid figures using their attributes.
11. Multiply, divide and simplify radicals.
12. Use mathematical grammar and appropriate mathematical symbols to represent contextual situations
13. Operate with numbers expressed in scientific notation.
14. Develop a thorough understanding of both rational and irrational numbers; make both historical and concrete connections between irrational numbers and the real world.
15. Use mathematical symbols and variables to express a relationship between quantities.
16. Model a variety of problem situations with expressions.
17. Skillfully manipulate formulas involving exponents.
18. Understand how mathematical properties yield equivalent equations and can be used in determining if two expressions are equivalent.
19. Perform polynomial arithmetic, including adding, subtracting, multiplying, dividing, factoring, and simplifying results.
20. Demonstrate fluency with techniques needed to simplify radical expressions and calculate with them, including addition, subtraction, and multiplication.
21. Rationalize denominators in order to perform division with radicals.
22. Understand that a linear function models a situation in which a quantity changes at a constant rate, m, relative to another.
23. Graph quadratic equations and identify key characteristics of the graph.
24. Find the solution of a quadratic equation and/or zeros of a quadratic function.
25. Operate (add, subtract, multiply, and divide) with and evaluate rational expressions.
26. Operate (add, subtract, multiply, divide, simplify, powers) with radicals and radical expressions including radicands involving rational numbers and algebraic expressions.
27. Identify and calculate the measures of central tendency and spread in a set of data.
28. Understand the correlation coefficient and its role in measuring the goodness of fit for a model for a data set.
29. Analyze data to make predictions based on an understanding of the data set, for example, use a scatter plot to determine if a linear relationship exists and describe the association between the variables.
30. Use algebra and geometry to solve problems involving midpoints and distances (i.e. geometric figures).
31. Understand that there are numbers that are not rational numbers, called irrational numbers, e.g., π, e, and $\sqrt{2}$, which together with the rational numbers form the real number system that satisfies the laws of arithmetic.
32. Apply and use elementary number concepts and number properties to model and solve non-routine problems that involve new ideas.
33. Determine if a data set represents a line through numerically analyzing slope calculations. If appropriate, interpret the slope in terms of a rate.
34. Find the probability of simple events, disjoint events, compound events, and independent events in various settings using a variety of counting techniques.
35. Develop fluency with the basic operations of complex numbers.
Category
Category

Calculus

The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. These practices rest on important "processes and proficiencies" with longstanding importance in mathematics education. The first of these are the NCTM process standards of problem solving, reasoning and proof, communication, representation, and connections. The second are the strands of mathematical proficiency specified in the National Research Council's report Adding It Up: adaptive reasoning, strategic competence, conceptual understanding (comprehension of mathematical concepts, operations and relations), procedural fluency (skill in carrying out procedures flexibly, accurately, efficiently and appropriately), and productive disposition (habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one's own efficacy).

1. Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

2. Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

3. Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

4. Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

5. Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

6. Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

7. Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well-remembered $7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $x^{2}+9 x+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5-3(x-y)^{2}$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

8. Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1,2) with slope 3, middle school students might abstract the equation $(y-2) /(x-1)=3$. Noticing the regularity in the way terms cancel when expanding $(x-1)(x+1),(x-1)\left(x^{2}+x+1\right)$, and $(x-1)\left(x^{3}+x^{2}+x+1\right)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

	Domain	Cluster	Standards
			1. Calculate limits (including limits at infinity) using algebra. 2. Estimate limits of functions (including one-sided limits) from graphs or tables of data. Apply the definition of a limit to a variety of functions, including piece-wise functions. 3. Draw a sketch that illustrates the definition of the limit; develop multiple real world scenarios that illustrate the definition of the limit.
			1. Describe asymptotic behavior (analytically and graphically) in terms of infinite limits and limits at infinity. 2. Discuss the various types of end behavior of functions; identify prototypical functions for each type of end behavior.
			1. Define continuity at a point using limits; define continuous functions. 2. Determine whether a given function is continuous at a specific point. 3. Determine and define different types of discontinuity (point, jump, infinite) in terms of limits. 4. Apply the Intermediate Value Theorem and Extreme Value Theorem to continuous functions.

	Domain	Cluster	Standards
Derivatives			1. Represent and interpret the derivative of a function graphically, numerically, and analytically. 2. Interpret the derivative as an instantaneous rate of change. 3. Define the derivative as the limit of the difference quotient; illustrate with the sketch of a graph. 4. Demonstrate the relationship between differentiability and continuity.
			1. Interpret the derivative as the slope of a curve (which could be a line) at a point, including points at which there are vertical tangents and points at which there are no tangents (i.e., where a function is not locally linear). 2. Approximate both the instantaneous rate of change and the average rate of change given a graph or table of values. 3. Write the equation of the line tangent to a curve at a given point. 4. Apply the Mean Value Theorem. 5. Understand Rolle's Theorem as a special case of the Mean Value Theorem.
			1. Describe in detail how the basic derivative rules are used to differentiate a function; discuss the difference between using the limit definition of the derivative and using the derivative rules. 2. Calculate the derivative of basic functions (power, exponential, logarithmic, and trigonometric). 3. Calculate the derivatives of sums, products, and quotients of basic functions. 4. Apply the chain rule to find the derivative of a composite function. 5. Implicitly differentiate an equation in two or more variables. 6. Use implicit differentiation to find the derivative of the inverse of a function.
			1. Relate the increasing and decreasing behavior of f to the sign of f^{\prime} both analytically and graphically. 2. Use the first derivative to find extrema (local and global). 3. Analytically locate the intervals on which a function is increasing, decreasing or neither. 4. Relate the concavity of f to the sign of $f^{\prime \prime}$ both analytically and graphically. 5. Use the second derivative to find points of inflection as points where concavity changes. 6. Analytically locate intervals on which a function is concave up, concave down or neither. 7. Relate corresponding characteristics of the graphs of f, f^{\prime}, and $f^{\prime \prime}$. 8. Translate verbal descriptions into equations involving derivatives and vice versa.
			1. Model rates of change, including related rates problems. In each case, include a discussion of units. 2. Solve optimization problems to find a desired maximum or minimum value. 3. Use differentiation to solve problems involving velocity, speed, and acceleration. 4. Use tangent lines to approximate function values and changes in function values when inputs change (linearization).

Discrete Math

The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. These practices rest on important "processes and proficiencies" with longstanding importance in mathematics education. The first of these are the NCTM process standards of problem solving, reasoning and proof, communication, representation, and connections. The second are the strands of mathematical proficiency specified in the National Research Council's report Adding It Up: adaptive reasoning, strategic competence, conceptual understanding (comprehension of mathematical concepts, operations and relations), procedural fluency (skill in carrying out procedures flexibly, accurately, efficiently and appropriately), and productive disposition (habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one's own efficacy).

1. Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

2. Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

3. Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

4. Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

5. Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

6. Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

7. Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well-remembered $7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $x^{2}+9 x+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5-3(x-y)^{2}$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

8. Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through $(1,2)$ with slope 3 , middle school students might abstract the equation $(y-2) /(x-1)=3$. Noticing the regularity in the way terms cancel when expanding $(x-1)(x+1),(x-1)\left(x^{2}+x+1\right)$, and $(x-1)\left(x^{3}+x^{2}+x+1\right)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.
Category
Category

Senior Finite Math

The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. These practices rest on important "processes and proficiencies" with longstanding importance in mathematics education. The first of these are the NCTM process standards of problem solving, reasoning and proof, communication, representation, and connections. The second are the strands of mathematical proficiency specified in the National Research Council's report Adding It Up: adaptive reasoning, strategic competence, conceptual understanding (comprehension of mathematical concepts, operations and relations), procedural fluency (skill in carrying out procedures flexibly, accurately, efficiently and appropriately), and productive disposition (habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one's own efficacy).

1. Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

2. Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

3. Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

4. Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

5. Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

6. Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

7. Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well-remembered $7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $x^{2}+9 x+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5-3(x-y)^{2}$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

8. Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1,2) with slope 3 , middle school students might abstract the equation $(y-2) /(x-1)=3$. Noticing the regularity in the way terms cancel when expanding $(x-1)(x+1),(x-1)\left(x^{2}+x+1\right)$, and $(x-1)\left(x^{3}+x^{2}+x+1\right)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.
Category
Linear
programming
(A-LP)

1. Use mathematical models involving equations and systems of equations to represent, interpret, and analyze quantitative relationships, change in various contexts, and other real-world phenomena.
2. Read, interpret, and solve linear programming problems graphically and by computational methods.
3. Use linear programming to solve optimization problems.
4. Interpret the meaning of the maximum or minimum value in terms of the objective function.
Category

Category	Domain	Standards
	$\begin{aligned} & \text { Develop concepts in probability } \\ & \text { (D-CP) } \end{aligned}$	1. Differentiate between permutations and combinations. 2. Evaluate expressions indicating permutations or combinations. 3. Define the relationship between permutations and the multiplication principle. 4. Use permutations and combinations to compute probabilities of compound events and solve problems. 5. Understand and apply the relationship between conditional probabilities and the probabilities of the individual events. 6. Calculate conditional probabilities using Bayes Theorem.
		1. Organize data for problem solving. 2. Use a variety of counting methods to organize information, determine probabilities, and solve problems. 3. Analyze survey data using Venn diagrams. 4. Calculate and interpret statistical problems using measures of central tendency and graphs. 5. Translate from one representation of data to another, e.g., a bar graph to a circle graph. 6. Calculate expected value, e.g., to determine the fair price of an investment. 7. Evaluate and compare two investments or strategies, where one investment or strategy is safer but has lower expected value. Include large and small investments and situations with serious consequences.

Precalculus

The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. These practices rest on important "processes and proficiencies" with longstanding importance in mathematics education. The first of these are the NCTM process standards of problem solving, reasoning and proof, communication, representation, and connections. The second are the strands of mathematical proficiency specified in the National Research Council's report Adding It Up: adaptive reasoning, strategic competence, conceptual understanding (comprehension of mathematical concepts, operations and relations), procedural fluency (skill in carrying out procedures flexibly, accurately, efficiently and appropriately), and productive disposition (habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one's own efficacy).

1. Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

2. Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents - and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

3. Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

4. Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

5. Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

6. Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

7. Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well-remembered $7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $x^{2}+9 x+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5-3(x-y)^{2}$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

8. Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying
attention to the calculation of slope as they repeatedly check whether points are on the line through $(1,2)$ with slope 3 , middle school students might abstract the equation $(y-2) /(x-1)=3$. Noticing the regularity in the way terms cancel when expanding $(x-1)(x+1),(x-1)\left(x^{2}+x+1\right)$, and $(x-1)\left(x^{3}+x^{2}+x+1\right)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

Domain	Cluster	Standard
		1. Use the laws of exponents and logarithms to expand or collect terms in expressions; simplify expressions or modify them in order to analyze them or compare them. 2. Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents. ${ }^{\star}$ 3. Classify real numbers and order real numbers that include transcendental expressions, including roots and fractions of pi and e. 4. Simplify complex radical and rational expressions; discuss and display understanding that rational numbers are dense in the real numbers and the integers are not. 5. Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.
		1. Perform arithmetic operations with complex numbers expressing answers in the form a+bi. 2. Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers. 3. Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number. 4. Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation. For example, $(-1+\sqrt{3} i)^{3}=8$ because $(-1+\sqrt{3} i)$ has modulus 2 and argument 120°. 5. Calculate the distance between numbers in the complex plane as the modulus of the difference, and the midpoint of a segment as the average of the numbers at its endpoints.
		6. Extend polynomial identities to the complex numbers. For example, rewrite $x^{2}+4$ as $(x+2 i)(x-2 i)$. 7. Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.

	Domain	Cluster	Standard
$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{0} \\ & \frac{00}{<} \end{aligned}$	$\begin{aligned} & \text { Sequences and Series } \\ & \text { (A-S) } \end{aligned}$		1. Demonstrate an understanding of sequences by representing them recursively and explicitly. 2. Use sigma notation to represent a series; expand and collect expressions in both finite and infinite settings. 3. Derive and use the formulas for the general term and summation of finite or infinite arithmetic and geometric series, if they exist. a. Determine whether a given arithmetic or geometric series converges or diverges. b. Find the sum of a given geometric series (both infinite and finite). c. Find the sum of a finite arithmetic series. 4. Understand that series represent the approximation of a number when truncated; estimate truncation error in specific examples. 5. Know and apply the Binomial Theorem for the expansion of $(x+y)^{n}$ in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle.
	Reasoning with Equations and Inequalities(A-REI)		1. Represent a system of linear equations as a single matrix equation in a vector variable. 2. Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3×3 or greater). 3. Solve nonlinear inequalities (quadratic, trigonometric, conic, exponential, logarithmic, and rational) by graphing (solutions in interval notation if one-variable), by hand and with appropriate technology. 4. Solve systems of nonlinear inequalities by graphing.
			1. Graph curves parametrically (by hand and with appropriate technology). 2. Eliminate parameters by rewriting parametric equations as a single equation.
			1. Display all of the conic sections as portions of a cone. 2. Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant. 3. From an equation in standard form, graph the appropriate conic section: ellipses, hyperbolas, circles, and parabolas. Demonstrate an understanding of the relationship between their standard algebraic form and the graphical characteristics. 4. Transform equations of conic sections to convert between general and standard form.

	Domain	Cluster	Standard
n			1. Understand how the algebraic properties of an equation transform the geometric properties of its graph. For example, given a function, describe the transformation of the graph resulting from the manipulation of the algebraic properties of the equation (i.e., translations, stretches, reflections and changes in periodicity and amplitude). 2. Develop an understanding of functions as elements that can be operated upon to get new functions: addition, subtraction, multiplication, division, and composition of functions. 3. Compose functions. For example, if $T(y)$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $T(h(t))$ is the temperature at the location of the weather balloon as a function of time. 4. Construct the difference quotient for a given function and simplify the resulting expression. 5. Find inverse functions (including exponential, logarithmic and trigonometric). a. Calculate the inverse of a function, $f(x)$, with respect to each of the functional operations; in other words, the additive inverse, $-f(x)$, the multiplicative inverse, $\frac{1}{f(x)}$, and the inverse with respect to composition, $f^{-1}(x)$. Understand the algebraic and graphical implications of each type. b. Verify by composition that one function is the inverse of another. c. Read values of an inverse function from a graph or a table, given that the function has an inverse. d. Recognize a function is invertible if and only if it is one-to-one. Produce an invertible function from a non-invertible function by restricting the domain. 6. Explain why the graph of a function and its inverse are reflections of one another over the line $y=x$.
			1. Determine whether a function is even, odd, or neither. 2. Analyze qualities of exponential, polynomial, logarithmic, trigonometric, and rational functions and solve real world problems that can be modeled with these functions (by hand and with appropriate technology). ${ }^{\star}$ 3. Identify or analyze the distinguishing properties of exponential, polynomial, logarithmic, trigonometric, and rational functions from tables, graphs, and equations. 4. Identify the real zeros of a function and explain the relationship between the real zeros and the x-intercepts of the graph of a function (exponential, polynomial, logarithmic, trigonometric, and rational). 5. Identify characteristics of graphs based on a set of conditions or on a general equation such as $y=a x^{2}+c$. 6. Visually locate critical points on the graphs of functions and determine if each critical point is a minimum, a maximum, or point of inflection. Describe intervals where the function is increasing or decreasing and where different types of concavity occur. 7. Graph rational functions, identifying zeros, asymptotes (including slant), and holes (when suitable factorizations are available) and showing end-behavior.

	Domain	Cluster	Standard
	Trigonometric Functions (F-TF)		1. Convert from radians to degrees and from degrees to radians. 2. Use special triangles to determine geometrically the values of sine, cosine, tangent for $\pi / 3, \pi / 4$ and $\pi / 6$, and use the unit circle to express the values of sine, cosine, and tangent for $\pi-x, \pi+x$, and $2 \pi-x$ in terms of their values for x, where x is any real number. 3. Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.
을 $\frac{0}{5}$ $\frac{1}{4}$			1. Interpret transformations of trigonometric functions. 2. Determine the difference made by choice of units for angle measurement when graphing a trigonometric function. 3. Graph the six trigonometric functions and identify characteristics such as period, amplitude, phase shift, and asymptotes. 4. Find values of inverse trigonometric expressions (including compositions), applying appropriate domain and range restrictions. 5. Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed. 6. Determine the appropriate domain and corresponding range for each of the inverse trigonometric functions. 7. Graph the inverse trigonometric functions and identify their key characteristics. 8. Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions using technology, and interpret them in terms of the context.
z			1. Use the definitions of the six trigonometric ratios as ratios of sides in a right triangle to solve problems about lengths of sides and measures of angles. 2. Derive the formula $A=1 / 2 a b \sin (C)$ for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side. 3. Derive and apply the formulas for the area of sector of a circle. 4. Calculate the arc length of a circle subtended by a central angle. 5. Prove the Laws of Sines and Cosines and use them to solve problems. 6. Understand and apply the Law of Sines (including the ambiguous case) and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).

	Domain	Cluster	Standard
			1. Apply trigonometric identities to verify identities and solve equations. Identities include: Pythagorean, reciprocal, quotient, sum/difference, double-angle, and half-angle. 2. Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems.
	\qquad		1. Graph functions in polar coordinates. 2. Convert between rectangular and polar coordinates. 3. Represent situations and solve problems involving polar coordinates.^
	Model with Data^ (S-MD)		1. Create scatter plots, analyze patterns and describe relationships for bivariate data (linear, polynomial, trigonometric or exponential) to model real-world phenomena and to make predictions. 2. Determine a regression equation to model a set of bivariate data. Justify why this equation best fits the data. 3. Use a regression equation modeling bivariate data to make predictions. Identify possible considerations regarding the accuracy of predictions when interpolating or extrapolating.

Statistics

The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. These practices rest on important "processes and proficiencies" with longstanding importance in mathematics education. The first of these are the NCTM process standards of problem solving, reasoning and proof, communication, representation, and connections. The second are the strands of mathematical proficiency specified in the National Research Council's report Adding It Up: adaptive reasoning, strategic competence, conceptual understanding (comprehension of mathematical concepts, operations and relations), procedural fluency (skill in carrying out procedures flexibly, accurately, efficiently and appropriately), and productive disposition (habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one's own efficacy).

1. Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

2. Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents -and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

3. Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

4. Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

5. Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

6. Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

7. Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well-remembered $7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $x^{2}+9 x+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5-3(x-y)^{2}$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

8. Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1,2) with slope 3 , middle school students might abstract the equation $(y-2) /(x-1)=3$. Noticing the regularity in the way terms cancel when expanding $(x-1)(x+1),(x-1)\left(x^{2}+x+1\right)$, and $(x-1)\left(x^{3}+x^{2}+x+1\right)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

	Domain	Cluster	Standard
			1. Understand the term 'variable' and differentiate between the data types: measurement, categorical, univariate and bivariate. 2. Understand histograms, parallel box plots, and scatterplots, and use them to display and compare data. 3. Summarize distributions of univariate data. 4. Compute basic statistics and understand the distinction between a statistic and a parameter. 5. For univariate measurement data, be able to display the distribution, describe its shape; select and calculate summary statistics. 6. Recognize how linear transformations of univariate data affect shape, center, and spread. 7. Analyze the effect of changing units on summary measures. 8. Construct and analyze frequency tables and bar charts. 9. Describe individual performances in terms of percentiles, z -scores, and t-scores.
			10. Explore categorical data. 11. Display and discuss bivariate data where at least one variable is categorical. 12. For bivariate measurement data, be able to display a scatterplot and describe its shape; use technological tools to determine regression equations and correlation coefficients. 13. Identify trends in bivariate data; find functions that model the data and that transform the data so that they can be modeled.
			1. Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). 2. Use permutations and combinations to compute probabilities of compound events and solve problems. 3. Demonstrate an understanding of the Law of Large Numbers (Strong and Weak).
			4. Demonstrate an understanding of the addition rule, the multiplication rule, conditional probability, and independence. 5. Apply the general Multiplication Rule in a uniform probability model, $P(A$ and $B)=P(A) P(B \mid A)=P(B) P(A \mid B)$, and interpret the answer in terms of the model.

1. Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space; graph the corresponding probability distribution using the same graphical displays as for data distributions.
2. Calculate the expected value of a random variable; interpret it as the mean of the probability distribution.
3. Design a simulation of random behavior and probability distributions.
4. Analyze discrete random variables and their probability distributions, including binomial and geometric.
5. Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; find the expected value. For example, find the theoretical probability distribution for the number of correct answers obtained by guessing on all five questions of a multiple-choice test where each question has four choices, and find the expected grade under various grading schemes.
6. Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value. For example, find a current data distribution on the number of TV sets per household in the United States, and calculate the expected number of sets per household. How many TV sets would you expect to find in 100 randomly selected households?
7. Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values.
a. Find the expected payoff for a game of chance. For example, find the expected winnings from a state lottery ticket or a game at a fast-food restaurant.
b. Evaluate and compare strategies on the basis of expected values. For example, compare a high-deductible versus a low-deductible automobile insurance policy using various, but reasonable, chances of having a minor or a major accident.
8. Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).
9. Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game).
10. Calculate the mean (expected value) and standard deviation of both a random variable and a linear transformation of a random variable.
11. Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.

	Domain	Cluster	Standard
			1. Understand the differences among various kinds of studies and which types of inferences can be legitimately drawn from each. 2. Compare census, sample survey, experiment, and observational study. 3. Describe the role of randomization in surveys and experiments. 4. Demonstrate an understanding of bias in sampling. 5. Describe the sampling distribution of a statistic and define the standard error of a statistic. 6. Demonstrate an understanding of the Central Limit Theorem.
			7. Select a method to collect data and plan and conduct surveys and experiments. 8. Compare and use sampling methods, including simple random sampling, stratified random sampling, and cluster sampling. 9. Test hypotheses using appropriate statistics. 10. Analyze results and make conclusions from observational studies, experiments, and surveys. 11. Evaluate reports based on data.
			12. Develop and evaluate inferences and predictions that are based on data. 13. Use properties of point estimators, including biased/unbiased, and variability.
			14. Understand the meaning of confidence level, of confidence intervals, and the properties of confidence intervals. 15. Construct and interpret a large sample confidence interval for a proportion and for a difference between two proportions. 16. Construct the confidence interval for a mean and for a difference between two means.
			17. Apply the properties of a Chi-square distribution in appropriate situations in order to make inferences about a data set. 18. Apply the properties of the normal distribution in appropriate situations in order to make inferences about a data set. 19. Interpret the t-distribution and determine the appropriate degrees of freedom.

