

Tennessee Stream Mitigation Guidelines

Mitigation Outreach Event June 1, 2016

Division of Water Resources

Vena Jones- Natural Resources Section

Mitigation - In the Beginning...

- Early TN mitigation history
 - Permittee responsible mitigation
 - Poorly tracked
 - Compliance challenges
 - Varying degrees of success
- Development of Guidelines
 - Early 2000's
 - Contribution from agencies and stakeholders
 - Aimed at improving the replacement of lost resource value

2004 TN Stream Mitigation Guidelines

- Regulatory Tool
 - Focuses on projects that reestablish maximum **biological**, **chemical**, and **physical** integrity to resource
 - Greater ecological benefits receive greater mitigation credit
- Informs TDEC and USACE
 - mitigation credits
 - Ratio based
 - Narrative criteria
 - TDEC uses to also inform on ratios for debits

Framework

- Establishes regulatory authority
- Classifies alterations that require mitigation based on impact type
- Establishes mitigation site baseline requirements
- Classifies stream mitigation projects and associated ratios
- Monitoring requirements
 - Permittee responsible

STREAM MITIGATION GUIDELINES FOR THE STATE OF TENNESSEE

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF WATER POLLUTION CONTROL NATURAL RESOURCES SECTION

TN Department of Environment & Conservation

July 1, 2004

Stream Alterations Requiring Mitigation: Assessing Debits

- loss of stream length or wetland area
- loss of in-stream or wetlands habitat
- impairment of stream channel stability
- diminishment in species composition in any stream, wetland, or state waters
- loss of stream canopy
- activity is reasonably likely to have cumulative or secondary impacts to the water resource

Classification of Stream Alterations: Determining Debits

Alteration III

- Elimination/Encapsulation
- Impact Ratio is 1:1
- Activities that result in complete or near-complete loss of stream functions
 - Culverts
 - Loss of stream length from relocations and fillings
 - Concrete lined channels
- Lengths that trigger mitigation are dependent on impacts

Determining Debits

Alteration II

- <u>Impact ratio 0.75:1</u>
- Activities that result in a moderate loss of stream function
 - Riprap lined channels
 - Impoundments
 - Channel modifications that increase the existing cross section to convey flood flows
- Lengths that trigger mitigation are dependent on impacts

Determining Debits

- Alteration I
 - <u>Impact ratio 0.5:1</u>
 - Activities that result in lesser impacts to stream function
 - Removal of tree canopy
 - Synthetic channel liners
 - Modifications that deviate from or degrade the proper pattern, profile, dimension
 - Degrade in-stream habitat
 Riffles, pools, etc...
 - Lengths that trigger mitigation are dependent on impacts

Framework

- Establishes regulatory authority
- Classifies alterations that require mitigation based on impact type
- Establishes mitigation site baseline requirements
- Classifies stream mitigation projects and associated ratios
- Monitoring requirements
 - Permittee responsible

STREAM MITIGATION GUIDELINES FOR THE STATE OF TENNESSEE

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF WATER POLLUTION CONTROL NATURAL RESOURCES SECTION

July 1, 2004

Stream Mitigation - Generating Credits

Site Selection

- Foundation for quality mitigation
- Focuses on significantly degraded streams near impact site
- Stream segments must be impaired – habitat focus
- Priority given to streams on 303(d) list
- Impaired but not listed
 - Document/demonstrate impairment

Stream Mitigation - Generating Credits

Other Relevant Factors

- Perpetual protection
 - All stream mitigation projects shall be protected in perpetuity
 - Mitigation credit will only be given to projects that are protected in perpetuity
- Level III ecoregion or HUC 8
- w/in one Strahler stream order
- Watershed consistency
 - Urban vs rural

Framework

- Establishes regulatory authority
- Classifies alterations that require mitigation based on impact type
- Establishes mitigation site baseline requirements
- Classifies stream mitigation projects and associated ratios
- Monitoring requirements
 - Permittee responsible

STREAM MITIGATION GUIDELINES FOR THE STATE OF TENNESSEE

TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF WATER POLLUTION CONTROL NATURAL RESOURCES SECTION

July 1, 2004

- Replacement
 - <u>Credit Ratio 1:1</u>
 - Daylighting streams or removing concrete lined channels
 - Based on reference conditions
 - Typically includes rebuilding pattern, profile, dimension

– Riparian zone

Restoration

- <u>Credit Ratio 1.5:1</u>
- Returns a significantly degraded stream, including riparian zone and flood prone area to a natural stable condition
- Based on reference conditions
- Typically includes rebuilding pattern, profile, dimension
- If project increases the channel length then 1:1 credit ratio will be given for additional linear feet

- Enhancement II
 - <u>Credit Ratio 3:1</u>
 - Significant bank stabilization
 - Introduction of instream habitat
 - Re-establishment of native vegetation
 - Along both banks of the stream channel

Enhancment I

- Credit Ratio 4-6:1
- Involves any partial combination
 - Bank stabilization
 - Livestock exclusion
 - Intro of in-stream habitat

Preservation

- Credit Ratio 10-60:1
- A component of a restoration project
- Threatened, unique, or ecologically significant resources

2012 Draft Stream Mitigation Guidelines?

Realized deficiencies in the 2004 mitigation guidelines; qualitative/subjective

- Wanted to be consistent with USACE requirements
- Wanted to align state guidelines with the 2008 Final Rule to the extent practical for TN
- Wanted to establish **functional lift**
- Move away from linear footage/ratio based system
 Shortcomings
- Received significant comment on efficacy of functional assessment parameters and methods
- Division lacked capacity to create a robust functional assessment

The Future of TN Mitigation Guidelines

- 2013 EPA Wetland Program Development Grant
- Establish ecoregion based reference sites
- Regional curves
- Ecological success criteria
- Development of Functional Assessment Tool

US Army Corps of Engineers ®

8 Level III Ecoregions in Tennessee (East to West):

- 66: Blue Ridge
- 67: Ridge and Valley
- 69: Central Appalachians
- 68: Southwestern Appalachians
- 71: Interior Plateau
- 65: Southeastern Plains
- 74: Mississippi Valley Loess Plains
- 73: Mississippi Alluvial Plain

Ecoregions of Tennessee

High-quality "reference" streams serve as design templates

Morphology Summary for Completed Streams in Ecoregion 71

Temp. ID	Drainage area	Channel slope	Cross- section area	Width	Mean depth	Width/ depth ratio	Entrenchment ratio	Stream classification
	(sq miles)	(ft/ft)	(sq feet)	(feet)	(feet)			
71-MB3	0.04	0.0108	2.3	4.2	0.5	7.8	13.1	E4
71-MB2	0.10	0.0310	4.9	7.3	0.7	11.3	4.2	E4b
71-MB1	0.27	0.0117	13.9	12.8	1.1	11.8	2.6	E4
71-12	0.36	0.0147	11.6	12.7	0.9	13.8	-3	C4
71-MB4	0.44	0.0070	10.0	10.3	1.0	10.7	3.1	E4
71-11	0.66	0.0084	19.6	24.5	0.8	30.7	1.5	B4c
71-MB6	0.66	0.0086	20.3	17.7	1.1	15.	5.0	C4
71-23	1.51	0.0177	27.2	20.0	1.4	14.8	1.7	B3c
71-MB5	2.34	0.0079	33.2	23.8	1		4.0	C4
71-28	4.97	0.0056	58.9	38.0	1.5	24.6	1.2	F1
71-29	7.64	0.0073	63.0	41 7		27.6	1.6	B1c
71-33	12.2	0.0039	72.9	34.7	2.1	16.5	2.9	C1
71-34	13.8	0.0031	102.4	30.	2.8	12.6	1.2	F1
71-35	14.5	0.0024	118.	63	1.9	32.7	2.4	C1
71-36	24.3	0.0074	153.9	62.9	2.4	25.7	2.5	C4
71-37	35.7	0.0000		65.0	4.8	13.6	3.7	C1
71-39	41.3	01/	260.0	78.6	3.3	23.8	2.4	C4
71-40	51.3	0.002	305.1	70.4	4.3	16.3	1.5	B1c
71-43	74.0	22	424.7	70.7	6.0	11.8	1.6	B3c
71-46	10	0.0014	675.1	114.2	5.9	19.3	5.6	С3

PRELIMINARY Regional Curves Ecoregion 71, Tennessee December 2015

TN Mitigation Guidelines in Transition

- Partner with USACE and IRT to adopt functional assessment guidance tools
- Parameters are measurable
- Based on known stream functions
- Inherent stream metric relationships
- Incorporate TDEC biological and water quality data
- Regionalize as information as it becomes available

Guidelines In Transition: Cross-Walking

	Stream	Assessment	Current	Proposed				
Mitigation Potential	Functional Group	Parameter	Stream State*	Stream State				
			(Measured)	(At a minimum)				
	Hydrology	Runoff						
	Hydraulics	Floodplain	NF-FAR	F				
Restoration	Geomorphology	Riparian	NF-FAR	F				
1.5:1		Bedform Diversity	NF-FAR	F				
		Lateral Stability	NF-FAR	F				
	Biology	Biology	NF-FAR	optional				
	Physiochemical	Water Quality	FAR-F	optional				
		Watershed Assessment	Fair-Good	not affected				
		Channel Evolution Model	NF, or justify trend to NF	F				
* Provide evidence of trend to	ovide evidence of trend to NF for any parameter that is measured as FAR							
	Hydrology	Runoff						
	Hydraulics	Floodplain*	NF-FAR	FAR-F				
Rehabilitation/Enhancement	Geomorphology	Riparian*	NF-FAR	F				
3:1		Bedform Diversity*	NF-FAR	FAR-F				
		Lateral Stability*	NF	F				
	Biology	Biology	NF-FAR	optional				
	Physiochemical	Water Quality	FAR-F	optional				
		Watershed Assessment	Fair-Good	not affected				
		Channel Evolution Model	NF-FAR	F				
*All of these assessment parameters must be lifted at least one functional category								
	Hydrology	Runoff						
	Hydraulics	Floodplain	FAR-F					
Enhancement I	Geomorphology	Riparian*	NF-FAR	FAR-F				
4:1-6:1		Bedform Diversity*	NF-FAR	FAR-F				
		Lateral Stability*	NF-FAR	FAR-F				
	Biology	Biology	FAR-F					
	Physiochemical	Water Quality	Any					
		Watershed Assessment	Any	not affected				
		Channel Evolution Model	Any	Any				
*If any of these parameters are NF in current state, proposed mitigation must address that parameter								
*At least one of these assessment parameters must be lifted one functional category. Multiple parameter lift may increase credit ratio.								

The Future of TN Mitigation Guidelines

• EPA Wetland Program Development Grant

• TDEC Goals

- Finalize regional curves 2016-2017
 Gather LWD data 2016-2017
 Gather ecological success criteria 2017
 Build regionalized quantification tool 2017-2018
 Updated Stream Mitigation Guidelines 2018
- Until then....We utilize the tools we have to make the best regulator decisions we can with the information given.

Questions ?

Vena Jones DWR-Natural Resources Unit <u>Vena.L.Jones@tn.gov</u> 615-253-5320

